In the past several years, from May 12, 2008 Wenchuan Mw8.0 earthquake in China to March 11, 2011 off the Pacific coast of Northeastern Mw9.0 earthquake in Japan, the world witnessed catastrophic disasters caused by d...In the past several years, from May 12, 2008 Wenchuan Mw8.0 earthquake in China to March 11, 2011 off the Pacific coast of Northeastern Mw9.0 earthquake in Japan, the world witnessed catastrophic disasters caused by destructive earthquakes. The earthquake posed a great threat to the development of society and economy, especially in the developing countries such as China. In order to reduce the losses in peoples life and properties in maximum possibilities, there were a lots of technologies had been researched and developed, among them the earthquake early warning system (EEWS) and rapid seismic instrumental intensity report (RSIIP) are the two of the state-of-the-art technologies for the purpose. They may be used to minimize property damage and loss of life and to aid emergency response after a destructive earthquake.展开更多
On December 18,2023,the Jishishan area in Gansu Province was jolted by a M_(S) 6.2 earthquake,which is the most powerful seismic event that occurred throughout the year in China.The earthquake occurred along the NWtre...On December 18,2023,the Jishishan area in Gansu Province was jolted by a M_(S) 6.2 earthquake,which is the most powerful seismic event that occurred throughout the year in China.The earthquake occurred along the NWtrending Lajishan fault(LJSF),a large tectonic transformation zone.After this event,China Earthquake Networks Center(CENC)has timely published several reports about seismic sources for emergency responses.The earthquake early warning system issued the first alert 4.9 s after the earthquake occurrence,providing prompt notification that effectively mitigated panics,injuries,and deaths of residents.The near real-time focal mechanism solution indicates that this earthquake is associated with a thrust fault.The distribution of aftershocks,the rupture process,and the recorded amplitudes from seismic monitoring and GNSS stations,all suggest that the mainshock rupture predominately propagates to the northwest direction.The duration of the rupture process is~12 s,and the largest slip is located at approximately 6.3 km to the NNW from the epicenter,with a peak slip of 0.12 m at~8 km depth.Seismic station N0028 recorded the highest instrumental intensity,which is 9.4 on the Mercalli scale.The estimated intensity map shows a seismic intensity reaching up to IX near the rupture area,consistent with field survey results.The aftershocks(up to December 22,2023)are mostly distributed in the northwest direction within~20 km of the epicenter.This earthquake caused serious casualties and house collapses,which requires further investigations into the impact of this earthquake.展开更多
As a result of our ability to acquire large volumes of real-time earthquake observation data, coupled with increased computer performance, near real-time seismic instrument intensity can be obtained by using ground mo...As a result of our ability to acquire large volumes of real-time earthquake observation data, coupled with increased computer performance, near real-time seismic instrument intensity can be obtained by using ground motion data observed by instruments and by using the appropriate spatial interpolation methods. By combining vulnerability study results from earthquake disaster research with earthquake disaster assessment models, we can estimate the losses caused by devastating earthquakes, in an attempt to provide more reliable information for earthquake emergency response and decision support. This paper analyzes the latest progress on the methods of rapid earthquake loss estimation at home and abroad. A new method involving seismic instrument intensity rapid reporting to estimate earthquake loss is proposed and the relevant software is developed. Finally, a case study using the ML4.9 earthquake that occurred in Shun-chang county, Fujian Province on March 13, 2007 is given as an example of the proposed method.展开更多
文摘In the past several years, from May 12, 2008 Wenchuan Mw8.0 earthquake in China to March 11, 2011 off the Pacific coast of Northeastern Mw9.0 earthquake in Japan, the world witnessed catastrophic disasters caused by destructive earthquakes. The earthquake posed a great threat to the development of society and economy, especially in the developing countries such as China. In order to reduce the losses in peoples life and properties in maximum possibilities, there were a lots of technologies had been researched and developed, among them the earthquake early warning system (EEWS) and rapid seismic instrumental intensity report (RSIIP) are the two of the state-of-the-art technologies for the purpose. They may be used to minimize property damage and loss of life and to aid emergency response after a destructive earthquake.
基金supported by China Earthquake Administration Science for Earthquake Resilience(XH23050YB)Natural Science Foundation of China(42304072).
文摘On December 18,2023,the Jishishan area in Gansu Province was jolted by a M_(S) 6.2 earthquake,which is the most powerful seismic event that occurred throughout the year in China.The earthquake occurred along the NWtrending Lajishan fault(LJSF),a large tectonic transformation zone.After this event,China Earthquake Networks Center(CENC)has timely published several reports about seismic sources for emergency responses.The earthquake early warning system issued the first alert 4.9 s after the earthquake occurrence,providing prompt notification that effectively mitigated panics,injuries,and deaths of residents.The near real-time focal mechanism solution indicates that this earthquake is associated with a thrust fault.The distribution of aftershocks,the rupture process,and the recorded amplitudes from seismic monitoring and GNSS stations,all suggest that the mainshock rupture predominately propagates to the northwest direction.The duration of the rupture process is~12 s,and the largest slip is located at approximately 6.3 km to the NNW from the epicenter,with a peak slip of 0.12 m at~8 km depth.Seismic station N0028 recorded the highest instrumental intensity,which is 9.4 on the Mercalli scale.The estimated intensity map shows a seismic intensity reaching up to IX near the rupture area,consistent with field survey results.The aftershocks(up to December 22,2023)are mostly distributed in the northwest direction within~20 km of the epicenter.This earthquake caused serious casualties and house collapses,which requires further investigations into the impact of this earthquake.
基金National Key Technology R&D Program Granted (No. 2009BAK55B01)
文摘As a result of our ability to acquire large volumes of real-time earthquake observation data, coupled with increased computer performance, near real-time seismic instrument intensity can be obtained by using ground motion data observed by instruments and by using the appropriate spatial interpolation methods. By combining vulnerability study results from earthquake disaster research with earthquake disaster assessment models, we can estimate the losses caused by devastating earthquakes, in an attempt to provide more reliable information for earthquake emergency response and decision support. This paper analyzes the latest progress on the methods of rapid earthquake loss estimation at home and abroad. A new method involving seismic instrument intensity rapid reporting to estimate earthquake loss is proposed and the relevant software is developed. Finally, a case study using the ML4.9 earthquake that occurred in Shun-chang county, Fujian Province on March 13, 2007 is given as an example of the proposed method.