To estimate human loss in an earthquake-prone area, it is necessary to analyze the role played by the spatiotemporal distribution of the area’s resident population. In order to evaluate earthquake impact, this articl...To estimate human loss in an earthquake-prone area, it is necessary to analyze the role played by the spatiotemporal distribution of the area’s resident population. In order to evaluate earthquake impact, this article focuses on the spatiotemporal distribution of population and five scenario earthquakes that form the basis for loss estimation in the city of Sylhet, Bangladesh. Four temporal contexts(weekday, weekly holiday, the 30 days of Ramadan, and strike days) expand the more typical daytime and nighttime settings in which to examine hazard risk. The population distribution for every 2 hour interval in a day is developed for each type of day. A relationship between the occupancy classes and average space(persons per 100 m^2)is used to distribute people in each building regardless of building locations. A total daytime and nighttime population is obtained for each building and the estimated nighttime population is used to model the population for four temporal scenarios in a year based on different factors and weights. The resulting data are employed to estimate population loss for each of the temporal and earthquake scenarios. This study used building-specific human vulnerability curves developed by the Central American Probabilistic Risk Assessment(CAPRA) to obtain possible loss of life estimates. The results reveal that there is a high positive correlation between the spatiotemporal distribution of population and the potential number of casualties.展开更多
As a result of our ability to acquire large volumes of real-time earthquake observation data, coupled with increased computer performance, near real-time seismic instrument intensity can be obtained by using ground mo...As a result of our ability to acquire large volumes of real-time earthquake observation data, coupled with increased computer performance, near real-time seismic instrument intensity can be obtained by using ground motion data observed by instruments and by using the appropriate spatial interpolation methods. By combining vulnerability study results from earthquake disaster research with earthquake disaster assessment models, we can estimate the losses caused by devastating earthquakes, in an attempt to provide more reliable information for earthquake emergency response and decision support. This paper analyzes the latest progress on the methods of rapid earthquake loss estimation at home and abroad. A new method involving seismic instrument intensity rapid reporting to estimate earthquake loss is proposed and the relevant software is developed. Finally, a case study using the ML4.9 earthquake that occurred in Shun-chang county, Fujian Province on March 13, 2007 is given as an example of the proposed method.展开更多
Rapid estimation of post-earthquake building damage and loss is very important in urgent response efforts.The current approach leaves much room for improvement in estimating ground motion and correctly incorporating t...Rapid estimation of post-earthquake building damage and loss is very important in urgent response efforts.The current approach leaves much room for improvement in estimating ground motion and correctly incorporating the uncertainty and spatial correlation of the loss.This study proposed a new approach for rapidly estimating post-earthquake building loss with reasonable accuracy.The proposed method interpolates ground motion based on the observed ground motion using the Ground Motion Prediction Equation(GMPE)as the weight.It samples the building seismic loss quantile considering the spatial loss correlation that is expressed by Gaussian copula,and kriging is applied to reduce the dimension of direct sampling for estimation speed.The proposed approach was validated using three historical earthquake events in Japan with actual loss reports,and was then applied to predict the building loss amount for the March 2022 Fukushima Mw7.3 earthquake.The proposed method has high potential in future emergency efforts such as search,rescue,and evacuation planning.展开更多
This study achieved the construction of earthquake disaster scenarios based on physics-based methods-from fault dynamic rupture to seismic wave propagation-and then population and economic loss estimations.The physics...This study achieved the construction of earthquake disaster scenarios based on physics-based methods-from fault dynamic rupture to seismic wave propagation-and then population and economic loss estimations.The physics-based dynamic rupture and strong ground motion simulations can fully consider the three-dimensional complexity of physical parameters such as fault geometry,stress field,rock properties,and terrain.Quantitative analysis of multiple seismic disaster scenarios along the Qujiang Fault in western Yunnan Province in southwestern China based on different nucleation locations was achieved.The results indicate that the northwestern segment of the Qujiang Fault is expected to experience significantly higher levels of damage compared to the southeastern segment.Additionally,there are significant variations in human losses,even though the economic losses are similar across different scenarios.Dali Bai Autonomous Prefecture,Chuxiong Yi Autonomous Prefecture,Yuxi City,Honghe Hani and Yi Autonomous Prefecture,and Wenshan Zhuang and Miao Autonomous Prefecture were identified as at medium to high seismic risks,with Yuxi and Honghe being particularly vulnerable.Implementing targeted earthquake prevention measures in Yuxi and Honghe will significantly mitigate the potential risks posed by the Qujiang Fault.Notably,although the fault is within Yuxi,Honghe is likely to suffer the most severe damage.These findings emphasize the importance of considering rupture directivity and its influence on ground motion distribution when assessing seismic risk.展开更多
The seismic design criterion adopted in the existing seismic design codes is reviewed. It is pointed out that the presently used seismic design criterion is not satisfied with the requirements of nowadays social and e...The seismic design criterion adopted in the existing seismic design codes is reviewed. It is pointed out that the presently used seismic design criterion is not satisfied with the requirements of nowadays social and economic development. A new performance-based seismic design criterion that is composed of three components is presented in this paper. It can not only effectively control the economic losses and casualty, but also ensure the building's function in proper operation during earthquakes. The three components are: classification of seismic design for buildings, determination of seismic design intensity and/or seismic design ground motion for controlling seismic economic losses and casualties, and determination of the importance factors in terms of service periods of buildings. For controlling the seismic human losses, the idea of socially acceptable casualty level is presented and the 'Optimal Economic Decision Model' and 'Optimal Safe Decision Model' are established. Finally, a new method is recommended for calculating the importance factors of structures by adjusting structures service period on the base of more important structure with longer service period than the conventional ones. Therefore, the more important structure with longer service periods will be designed for higher seismic loads, in case the exceedance probability of seismic hazard in different service period is same.展开更多
文摘To estimate human loss in an earthquake-prone area, it is necessary to analyze the role played by the spatiotemporal distribution of the area’s resident population. In order to evaluate earthquake impact, this article focuses on the spatiotemporal distribution of population and five scenario earthquakes that form the basis for loss estimation in the city of Sylhet, Bangladesh. Four temporal contexts(weekday, weekly holiday, the 30 days of Ramadan, and strike days) expand the more typical daytime and nighttime settings in which to examine hazard risk. The population distribution for every 2 hour interval in a day is developed for each type of day. A relationship between the occupancy classes and average space(persons per 100 m^2)is used to distribute people in each building regardless of building locations. A total daytime and nighttime population is obtained for each building and the estimated nighttime population is used to model the population for four temporal scenarios in a year based on different factors and weights. The resulting data are employed to estimate population loss for each of the temporal and earthquake scenarios. This study used building-specific human vulnerability curves developed by the Central American Probabilistic Risk Assessment(CAPRA) to obtain possible loss of life estimates. The results reveal that there is a high positive correlation between the spatiotemporal distribution of population and the potential number of casualties.
基金National Key Technology R&D Program Granted (No. 2009BAK55B01)
文摘As a result of our ability to acquire large volumes of real-time earthquake observation data, coupled with increased computer performance, near real-time seismic instrument intensity can be obtained by using ground motion data observed by instruments and by using the appropriate spatial interpolation methods. By combining vulnerability study results from earthquake disaster research with earthquake disaster assessment models, we can estimate the losses caused by devastating earthquakes, in an attempt to provide more reliable information for earthquake emergency response and decision support. This paper analyzes the latest progress on the methods of rapid earthquake loss estimation at home and abroad. A new method involving seismic instrument intensity rapid reporting to estimate earthquake loss is proposed and the relevant software is developed. Finally, a case study using the ML4.9 earthquake that occurred in Shun-chang county, Fujian Province on March 13, 2007 is given as an example of the proposed method.
基金supported by the Scientific Research Fund of the Institute of Engineering Mechanics,China Earthquake Administration(Grant No.2021B09)the National Natural Science Foundation of China(Grant No.51978634)。
文摘Rapid estimation of post-earthquake building damage and loss is very important in urgent response efforts.The current approach leaves much room for improvement in estimating ground motion and correctly incorporating the uncertainty and spatial correlation of the loss.This study proposed a new approach for rapidly estimating post-earthquake building loss with reasonable accuracy.The proposed method interpolates ground motion based on the observed ground motion using the Ground Motion Prediction Equation(GMPE)as the weight.It samples the building seismic loss quantile considering the spatial loss correlation that is expressed by Gaussian copula,and kriging is applied to reduce the dimension of direct sampling for estimation speed.The proposed approach was validated using three historical earthquake events in Japan with actual loss reports,and was then applied to predict the building loss amount for the March 2022 Fukushima Mw7.3 earthquake.The proposed method has high potential in future emergency efforts such as search,rescue,and evacuation planning.
基金supported by the Guangdong Provincial Key Laboratory of Geophysical High-Resolution Imaging Technology (2022B1212010002)Key Special Project for Introduced Talents Team of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (GML2019ZD0203)the Shenzhen Science and Technology Program (KQTD20170810111725321)
文摘This study achieved the construction of earthquake disaster scenarios based on physics-based methods-from fault dynamic rupture to seismic wave propagation-and then population and economic loss estimations.The physics-based dynamic rupture and strong ground motion simulations can fully consider the three-dimensional complexity of physical parameters such as fault geometry,stress field,rock properties,and terrain.Quantitative analysis of multiple seismic disaster scenarios along the Qujiang Fault in western Yunnan Province in southwestern China based on different nucleation locations was achieved.The results indicate that the northwestern segment of the Qujiang Fault is expected to experience significantly higher levels of damage compared to the southeastern segment.Additionally,there are significant variations in human losses,even though the economic losses are similar across different scenarios.Dali Bai Autonomous Prefecture,Chuxiong Yi Autonomous Prefecture,Yuxi City,Honghe Hani and Yi Autonomous Prefecture,and Wenshan Zhuang and Miao Autonomous Prefecture were identified as at medium to high seismic risks,with Yuxi and Honghe being particularly vulnerable.Implementing targeted earthquake prevention measures in Yuxi and Honghe will significantly mitigate the potential risks posed by the Qujiang Fault.Notably,although the fault is within Yuxi,Honghe is likely to suffer the most severe damage.These findings emphasize the importance of considering rupture directivity and its influence on ground motion distribution when assessing seismic risk.
基金Chinese National Natural Science Foundation with the grant No.59895410the China Basic Research and Development Project:the Mechanism and Prediction of the Strong Earthquake of the Continental under the Grant No.95130603
文摘The seismic design criterion adopted in the existing seismic design codes is reviewed. It is pointed out that the presently used seismic design criterion is not satisfied with the requirements of nowadays social and economic development. A new performance-based seismic design criterion that is composed of three components is presented in this paper. It can not only effectively control the economic losses and casualty, but also ensure the building's function in proper operation during earthquakes. The three components are: classification of seismic design for buildings, determination of seismic design intensity and/or seismic design ground motion for controlling seismic economic losses and casualties, and determination of the importance factors in terms of service periods of buildings. For controlling the seismic human losses, the idea of socially acceptable casualty level is presented and the 'Optimal Economic Decision Model' and 'Optimal Safe Decision Model' are established. Finally, a new method is recommended for calculating the importance factors of structures by adjusting structures service period on the base of more important structure with longer service period than the conventional ones. Therefore, the more important structure with longer service periods will be designed for higher seismic loads, in case the exceedance probability of seismic hazard in different service period is same.