Using the PSGRN/PSCMP software and the fault model offered by USGS and on the basis of finite rectangular dislocation theory and the local layered wave velocity structures of the crust-upper-mantle, the in- fluences o...Using the PSGRN/PSCMP software and the fault model offered by USGS and on the basis of finite rectangular dislocation theory and the local layered wave velocity structures of the crust-upper-mantle, the in- fluences of crustal layering and thickness on co-seismic gravity changes and deformation of Wenchuan earthquake have been simulated. The results indicate that: the influences have a relationship with the attitude of faults and the relative position between calculated points and fault. The difference distribution form of simula- ted results between the two models is similar to that of co-seismic effect. For the per centum distribution, it' s restricted by the zero line of the co-seismic effects obviously. Its positive is far away from the zero line. For the crustal thickness, the effect is about 10% -20%. The negative and the effect over 30% focus around the zero line. The average influences of crustal layering and thickness for the E-W displacement, N-S displacement, vertical displacement and gravity changes are 18.4 % , 18.0% , 15.8 % and 16.2% respectively, When the crustal thickness is 40 km, they are 4.6% ,5.3% ,3.8% and 3.8%. Then the crustal thickness is 70 kin, the average influences are 3.5%, 4. 6% ,3.0% and 2.5% respectively.展开更多
This paper is the first one of a series of three papers on the fluid evolution of the crust-upper mantle and the causes of earthquakes. Their relationship between the deep-seated fluids and the seismic activities are...This paper is the first one of a series of three papers on the fluid evolution of the crust-upper mantle and the causes of earthquakes. Their relationship between the deep-seated fluids and the seismic activities are discussed from aspects of their macoscopic scale, microscopic mechanism and dynamic behaviors in the three papers respectively. Based on magnetotelluric sounding (MT) measurements conducted by Chinese geophysicists in more than 20 years, the maps of the upper mantle conductive layer (MCL) with a buried depth of>50 km and the crustal conductive layer (CCL) with a buried depth of >15 km in the Chinese mainland are Presented in this paper. The resistivity structure, the causes of conductive layers in crust-mantle and the relationships between earthquake distribution and conductive layers are discussed.展开更多
This study aims at exploring the void space gas effect of earthquake-triggered slope instability and providing a new method for studying the formation mechanism of earthquake-triggered landslides. We analysed the basi...This study aims at exploring the void space gas effect of earthquake-triggered slope instability and providing a new method for studying the formation mechanism of earthquake-triggered landslides. We analysed the basic characteristics, kinematic characteristics, initiation mechanisms and physical mechanical parameters of the Daguangbao landslide, generalized a landslide prototype, and established a geological model and performed simulation tests. Based on the seismic wave propagation theory of rock-soil mass, rock fracture mechanics and the effective stress principle, we found that the void space gas effect is due to the occurrence of excess void space gas pressure when the dynamic response of seismic loads impacts the void space gas in weak intercalated layers of the slope. The excess void space gas pressure generated by the vibration(earthquake) damages the rock mass around the void space with a certain regularity. The model test results show that the effective shear strength of the rock mass can be reduced by 4.4% to 21.6% due to the void space gas effect.展开更多
Taking a concrete frame supporting space structure as the research object,we systematically studied its lateral-torsion coupling effect of reverse problems in consistent earthquake excitation.Firstly,based on its reve...Taking a concrete frame supporting space structure as the research object,we systematically studied its lateral-torsion coupling effect of reverse problems in consistent earthquake excitation.Firstly,based on its reverse forms and features,we put forward a mechanical analysis model(flexibility layer model) and a calculation method using the response spectrum method and the weighted average method,and verified their validity and feasibility using case analysis.The result shows that the translation displacement change trend of the space structure is basically the same whether reverse exists in the supporting structure or not,but the supporting structure torsion has an effect on the displacement with a relative increase of 10%.展开更多
On the basis of the previous studies of the layered crustal model in the Yutian area,combined with the field GPS continuous observation data,we roughly estimate the viscous coefficient of each layer. With the viscoela...On the basis of the previous studies of the layered crustal model in the Yutian area,combined with the field GPS continuous observation data,we roughly estimate the viscous coefficient of each layer. With the viscoelastic horizontal layer model,we calculate the viscoelastic co-seismic Coulomb stress change caused by the Yutian M_S7. 3 earthquakes 2008 and 2014 respectively. Based on the Coulomb stress change,using the calculation method of "direct "aftershock frequency,we come up with the theoretical earthquake frequency directly related to the mainshock and the co-seismic Coulomb stress change in the study area. Then we put forward a method,based on the comparison of theoretical and actual earthquake frequency or the comparison between theoretical and practical earthquake frequency-distance decay curve fitting residuals,to estimate the magnitude of a maximum sequent earthquake,directly related to the mainshock co-seismic Coulomb stress change. Results calculated by different methods show that the maximum follow-up earthquake magnitude caused by the coseismic Coulomb stress change lies from M_S7. 2 to M_S7. 5 following Yutian M_S7. 3 earthquake in 2008; but that of the 2014 Yutian M_S7. 3 earthquake is M_S6. 3. The former is very close to the Yutian M_S7. 3 earthquake in 2014.Because of the same magnitude,relatively close spatial distance,short time interval,the same region of the external force,the strong correlation between two seismic tectonic and a clear stress interaction,we thus consider that the two Yutian M_S7. 3 earthquakes in 2008 and 2014 constitute a pair of generalized double shock type earthquake. This is consistent with the sequence type characteristic of past "double shock"earthquakes in the region. In this paper,the influence of the magnitude lower limit and the b-value in the relationship of G-R on the results is discussed. As a result,when the viscoelastic coseismic Coulomb stress variation is determined,the lower limit of magnitude has little effect on the maximum sequent earthquake magnitude estimation,but b-value of G-R has a greater impact on the results.展开更多
In the present work, disturbances of the half-transparency frequency fbEs of the ionospheric sporadic E-layer are investigated in connection with earthquakes. The fbEs-frequency is proportional to the square root of t...In the present work, disturbances of the half-transparency frequency fbEs of the ionospheric sporadic E-layer are investigated in connection with earthquakes. The fbEs-frequency is proportional to the square root of the maximum ionisation density of the sporadic E-layer. In this work, it is shown that in 2/3 of the cases, two days before a seismic shock with magnitude M > 5.5 and on the day of the shock, an increase of the fbEs-frequency is obtained at sunset hours at distances from the epicenter R km. In contrast, before sunrise, the fbEs-value decreases. The data analysed are obtained by the three vertical ionospheric sounding stations“Kokubunji”, “Yamagawa”, and “Wakkanai” during some tens of years.展开更多
The processes leading to the growth and inhibition of equatorial anomaly before major earthquake (EQ) were viewed in this paper by examining global Total Electron Content (TEC) that contoured over longitude sectors co...The processes leading to the growth and inhibition of equatorial anomaly before major earthquake (EQ) were viewed in this paper by examining global Total Electron Content (TEC) that contoured over longitude sectors covering Africa to Pacific, in association with EQ events of Japan (M = 9) that occurred at 135°E to 145°E and 35°N to 40°N, on March 9 and 11, 2011 and of Indonesia (M = 8.6) that took place at 2.311°N, 93°E, in April 11, 2012. The paper focuses on the development of abnormal increase in density in the night sector around—10° latitude zone prior to the two major EQ events, though their epicenters are separated widely from the anomaly region. The F-layer density variations from relevant locations and TEC features obtained from GPS at Appleton anomaly crest station are utilized as supporting inputs. The possible sources leading to the anomalous development in density are discussed in the frame of EQ time consequences of lithospheric-atmospheric processes between the equator and beyond. The role of electric field generated by pre EQ preparatory activities and dynamical coupling modes through seismic fault line are brought in to the ambit of discussion.展开更多
Most of the earthquake faults in North-East India, China, mid Atlantic-ridge, the Pacific seismic belt and Japan are found to be predominantly dip-slip in nature. In the present paper a dip-slip fault is taken situate...Most of the earthquake faults in North-East India, China, mid Atlantic-ridge, the Pacific seismic belt and Japan are found to be predominantly dip-slip in nature. In the present paper a dip-slip fault is taken situated in an elastic layer over a viscoelastic half space representing the lithosphere-asthenosphere system. A movement of the dip-slip nature across the fault occurs when the accumulated stress due to various tectonic reasons e.g. mantle convection etc., exceeds the local friction and cohesive forces across the fault. The movement is assumed to be slipping in nature, expressions for displacements, stresses and strains are obtained by solving associated boundary value problem with the help of integral transformation and Green’s function method and a suitable numerical methods is used for computation. A detailed study of these expressions may give some ideas about the nature of stress accumulation in the system, which in turn will be helpful in formulating an earthquake prediction programme.展开更多
基金supported by the National Natural Science Foundation of China(40574012)the Earthquake Science Joint Foundation(A07030)
文摘Using the PSGRN/PSCMP software and the fault model offered by USGS and on the basis of finite rectangular dislocation theory and the local layered wave velocity structures of the crust-upper-mantle, the in- fluences of crustal layering and thickness on co-seismic gravity changes and deformation of Wenchuan earthquake have been simulated. The results indicate that: the influences have a relationship with the attitude of faults and the relative position between calculated points and fault. The difference distribution form of simula- ted results between the two models is similar to that of co-seismic effect. For the per centum distribution, it' s restricted by the zero line of the co-seismic effects obviously. Its positive is far away from the zero line. For the crustal thickness, the effect is about 10% -20%. The negative and the effect over 30% focus around the zero line. The average influences of crustal layering and thickness for the E-W displacement, N-S displacement, vertical displacement and gravity changes are 18.4 % , 18.0% , 15.8 % and 16.2% respectively, When the crustal thickness is 40 km, they are 4.6% ,5.3% ,3.8% and 3.8%. Then the crustal thickness is 70 kin, the average influences are 3.5%, 4. 6% ,3.0% and 2.5% respectively.
文摘This paper is the first one of a series of three papers on the fluid evolution of the crust-upper mantle and the causes of earthquakes. Their relationship between the deep-seated fluids and the seismic activities are discussed from aspects of their macoscopic scale, microscopic mechanism and dynamic behaviors in the three papers respectively. Based on magnetotelluric sounding (MT) measurements conducted by Chinese geophysicists in more than 20 years, the maps of the upper mantle conductive layer (MCL) with a buried depth of>50 km and the crustal conductive layer (CCL) with a buried depth of >15 km in the Chinese mainland are Presented in this paper. The resistivity structure, the causes of conductive layers in crust-mantle and the relationships between earthquake distribution and conductive layers are discussed.
基金funded by the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (No.SKLGP2016Z015)the Natural Science Foundation of China (No. 41572308)
文摘This study aims at exploring the void space gas effect of earthquake-triggered slope instability and providing a new method for studying the formation mechanism of earthquake-triggered landslides. We analysed the basic characteristics, kinematic characteristics, initiation mechanisms and physical mechanical parameters of the Daguangbao landslide, generalized a landslide prototype, and established a geological model and performed simulation tests. Based on the seismic wave propagation theory of rock-soil mass, rock fracture mechanics and the effective stress principle, we found that the void space gas effect is due to the occurrence of excess void space gas pressure when the dynamic response of seismic loads impacts the void space gas in weak intercalated layers of the slope. The excess void space gas pressure generated by the vibration(earthquake) damages the rock mass around the void space with a certain regularity. The model test results show that the effective shear strength of the rock mass can be reduced by 4.4% to 21.6% due to the void space gas effect.
基金Funded by the Research on Damage Mechanism of the Spatial Dome-Reinforced Concrete Structures and Reduce Vibration System in West Area (No. 51068019)
文摘Taking a concrete frame supporting space structure as the research object,we systematically studied its lateral-torsion coupling effect of reverse problems in consistent earthquake excitation.Firstly,based on its reverse forms and features,we put forward a mechanical analysis model(flexibility layer model) and a calculation method using the response spectrum method and the weighted average method,and verified their validity and feasibility using case analysis.The result shows that the translation displacement change trend of the space structure is basically the same whether reverse exists in the supporting structure or not,but the supporting structure torsion has an effect on the displacement with a relative increase of 10%.
基金sponsored by the Scientific Research Fund of the Department of Earthquake Monitoring and Prediction,CEA
文摘On the basis of the previous studies of the layered crustal model in the Yutian area,combined with the field GPS continuous observation data,we roughly estimate the viscous coefficient of each layer. With the viscoelastic horizontal layer model,we calculate the viscoelastic co-seismic Coulomb stress change caused by the Yutian M_S7. 3 earthquakes 2008 and 2014 respectively. Based on the Coulomb stress change,using the calculation method of "direct "aftershock frequency,we come up with the theoretical earthquake frequency directly related to the mainshock and the co-seismic Coulomb stress change in the study area. Then we put forward a method,based on the comparison of theoretical and actual earthquake frequency or the comparison between theoretical and practical earthquake frequency-distance decay curve fitting residuals,to estimate the magnitude of a maximum sequent earthquake,directly related to the mainshock co-seismic Coulomb stress change. Results calculated by different methods show that the maximum follow-up earthquake magnitude caused by the coseismic Coulomb stress change lies from M_S7. 2 to M_S7. 5 following Yutian M_S7. 3 earthquake in 2008; but that of the 2014 Yutian M_S7. 3 earthquake is M_S6. 3. The former is very close to the Yutian M_S7. 3 earthquake in 2014.Because of the same magnitude,relatively close spatial distance,short time interval,the same region of the external force,the strong correlation between two seismic tectonic and a clear stress interaction,we thus consider that the two Yutian M_S7. 3 earthquakes in 2008 and 2014 constitute a pair of generalized double shock type earthquake. This is consistent with the sequence type characteristic of past "double shock"earthquakes in the region. In this paper,the influence of the magnitude lower limit and the b-value in the relationship of G-R on the results is discussed. As a result,when the viscoelastic coseismic Coulomb stress variation is determined,the lower limit of magnitude has little effect on the maximum sequent earthquake magnitude estimation,but b-value of G-R has a greater impact on the results.
文摘In the present work, disturbances of the half-transparency frequency fbEs of the ionospheric sporadic E-layer are investigated in connection with earthquakes. The fbEs-frequency is proportional to the square root of the maximum ionisation density of the sporadic E-layer. In this work, it is shown that in 2/3 of the cases, two days before a seismic shock with magnitude M > 5.5 and on the day of the shock, an increase of the fbEs-frequency is obtained at sunset hours at distances from the epicenter R km. In contrast, before sunrise, the fbEs-value decreases. The data analysed are obtained by the three vertical ionospheric sounding stations“Kokubunji”, “Yamagawa”, and “Wakkanai” during some tens of years.
文摘The processes leading to the growth and inhibition of equatorial anomaly before major earthquake (EQ) were viewed in this paper by examining global Total Electron Content (TEC) that contoured over longitude sectors covering Africa to Pacific, in association with EQ events of Japan (M = 9) that occurred at 135°E to 145°E and 35°N to 40°N, on March 9 and 11, 2011 and of Indonesia (M = 8.6) that took place at 2.311°N, 93°E, in April 11, 2012. The paper focuses on the development of abnormal increase in density in the night sector around—10° latitude zone prior to the two major EQ events, though their epicenters are separated widely from the anomaly region. The F-layer density variations from relevant locations and TEC features obtained from GPS at Appleton anomaly crest station are utilized as supporting inputs. The possible sources leading to the anomalous development in density are discussed in the frame of EQ time consequences of lithospheric-atmospheric processes between the equator and beyond. The role of electric field generated by pre EQ preparatory activities and dynamical coupling modes through seismic fault line are brought in to the ambit of discussion.
文摘Most of the earthquake faults in North-East India, China, mid Atlantic-ridge, the Pacific seismic belt and Japan are found to be predominantly dip-slip in nature. In the present paper a dip-slip fault is taken situated in an elastic layer over a viscoelastic half space representing the lithosphere-asthenosphere system. A movement of the dip-slip nature across the fault occurs when the accumulated stress due to various tectonic reasons e.g. mantle convection etc., exceeds the local friction and cohesive forces across the fault. The movement is assumed to be slipping in nature, expressions for displacements, stresses and strains are obtained by solving associated boundary value problem with the help of integral transformation and Green’s function method and a suitable numerical methods is used for computation. A detailed study of these expressions may give some ideas about the nature of stress accumulation in the system, which in turn will be helpful in formulating an earthquake prediction programme.