The 2022 M6.9 Menyuan earthquake caused severe damage to a high-speed railway bridge,which was designed for high-speed trains running at speeds of above 250 km/h and is located right next to the fault.Bridges of this ...The 2022 M6.9 Menyuan earthquake caused severe damage to a high-speed railway bridge,which was designed for high-speed trains running at speeds of above 250 km/h and is located right next to the fault.Bridges of this type have been widely used for rapidly constructing the high-speed railway network,but few bridges have been tested by near-fault devastating earthquakes.The potential severe impact of the earthquake on the high-speed railway is not only the safety of the infrastructure,trains and passengers,but also economic loss due to interrupted railway use.Therefore,a field survey was carried out immediately after the earthquake to collect time-sensitive data.The damage to the bridge was carefully investigated,and quantitative analyses were conducted to better understand the mechanism of the bridge failure.It was found that seismic action perpendicular to the bridge’s longitudinal direction caused severe damage to the girders and rails,while none of the piers showed obvious deformation or cracking.The maximum values of transverse displacement,out-of-plane rotation and twisting angle of girders reached 212.6 cm,3.1 degrees and 19.9 degrees,respectively,causing severe damage to the bearing supports and anti-seismic retaining blocks.These observations provide a basis for improving the seismic design of high-speed railway bridges located in near-fault areas.展开更多
Severe damage to steel space structures is rarely reported when compared to other structural systems damaged during past major earthquakes around the world. Two gymnasiums of steel space structures in downtown Lushan ...Severe damage to steel space structures is rarely reported when compared to other structural systems damaged during past major earthquakes around the world. Two gymnasiums of steel space structures in downtown Lushan County that were damaged during the 2013 M7.0 Lushan earthquake in China were investigated and the observations are summarized in this paper. Typical damage to these two steel space structures ranges from moderate to severe. Moderate damage includes global buckling and dislocation of bolted connections of truss members, and inelastic elongation of anchor bolts and sliding of pedestal plates of supports. Severe damage includes member fracture caused by local buckling, and fracture failure of anchor bolts and welds. The distribution of structural damage to these two structures is described in detail and future research opportunities are suggested.展开更多
This article is to review results from scientific drilling and fault-zone trapped waves (FZTWs) at the south Longman-Shan fault (LSF) zone that ruptured in the 2008 May 12 M8 Wenchuan earthquake in Sichuan,China.I...This article is to review results from scientific drilling and fault-zone trapped waves (FZTWs) at the south Longman-Shan fault (LSF) zone that ruptured in the 2008 May 12 M8 Wenchuan earthquake in Sichuan,China.Immediately after the mainshock,two Wenchuan Fault Scientific Drilling (WFSD) boreholes were drilled at WFSD-1 and WFSD-2 sites approximately 400 m and 1 km west of the surface rupture along the Yinxiu-Beichuan fault (YBF),the middle fault strand of the south LSF zone.Two boreholes met the principal slip of Wenchuan earthquake along the YBF at depths of 589-m and 1230-m,respectively.The slip is accompanied with a 100-200-m-wide zone consisting of fault gouge,breccia,cataclasite and fractures.Close to WFSD-1 site,the nearly-vertical slip of ~4.3-m with a 190-m wide zone of highly fractured rocks restricted to the hanging wall of the YBF was found at the ground surface after the Wenchuan earthquake.A dense linear seismic array was deployed across the surface rupture at this venue to record FZTWs generated by aftershocks.Observations and 3-D finite-difference simulations of FZTWs recorded at this cross-fault array and network stations close to the YBF show a distinct low-velocity zone composed by severely damaged rocks along the south LSF at seismogenic depths.The zone is several hundred meters wide along the principal slip,within which seismic velocities are reduced by ~30-55% from wall-rock velocities and with the maximum velocity reduction in the ~200-m-wide rupture core zone at shallow depth.The FZTW-inferred geometry and physical properties of the south LSF rupture zone at shallow depth are in general consistent with the results from petrological and structural analyses of cores and well log at WFSD boreholes.We interpret this remarkable low-velocity zone as being a break-down zone during dynamic rupture in the 2008 M8 earthquake.We examined the FZTWS generated by similar earthquakes before and after the 2008 mainshock and observed that seismic velocities within fault core zone was reduced by ~10% due to severe damage of fault rocks during the M8 mainshock.Scientific drilling and locations of aftershocks generating prominent FZTWs also indicate rupture bifurcation along the YBF and the Anxian-Guangxian fault (AGF),two strands of the south LSF at shallow depth.A combination of seismic,petrologic and geologic study at the south LSF leads to further understand the relationship between the fault-zone structure and rupture dynamics,and the amplification of ground shaking strength along the low-velocity fault zone due to its waveguide effect.展开更多
On 3 August 2014, the Ludian earthquake struck northwest Yunnan Province with a surface wave magnitude of 6.5. This moderate earthquake unexpectedly caused high fatalities and great economic loss. Four strong motion s...On 3 August 2014, the Ludian earthquake struck northwest Yunnan Province with a surface wave magnitude of 6.5. This moderate earthquake unexpectedly caused high fatalities and great economic loss. Four strong motion stations were located in the areas with intensity V, VI, VII and IX, near the epicentre. The characteristics of the ground motion are discussed herein, including 1) ground motion was strong at a period of less than 1.4 s, which covered the natural vibration period of a large number of structures; and 2) the release energy was concentrated geographically. Based on materials collected during emergency building inspections, the damage patterns of adobe, masonry, timber frame and reinforced concrete (RC) frame structures in areas with different intensities are summarised. Earthquake damage matrices of local buildings are also given for fragility evaluation and earthquake damage prediction. It is found that the collapse ratios of RC frame and confined masonry structures based on the new design code are significantly lower than non-seismic buildings. However, the RC frame structures still failed to achieve the 'strong column, weak beam' design target. Traditional timber frame structures with a light infill wall showed good aseismic performance.展开更多
A comprehensive study is presented for empirical seismic vulnerability assessment of typical structural types, representative of the building stock of Southern Europe, based on a large set of damage statistics. The ob...A comprehensive study is presented for empirical seismic vulnerability assessment of typical structural types, representative of the building stock of Southern Europe, based on a large set of damage statistics. The observational database was obtained from post-earthquake surveys carried out in the area struck by the September 7, 1999 Athens earthquake. After analysis of the collected observational data, a unified damage database has been created which comprises 180,945 damaged buildings from/after the near-field area of the earthquake. The damaged buildings are classified in specific structural types, according to the materials, seismic codes and construction techniques in Southern Europe. The seismic demand is described in terms of both the regional macroseismic intensity and the ratio αg/ao, where αg is the maximum peak ground acceleration (PGA) of the earthquake event and ao is the unique value PGA that characterizes each municipality shown on the Greek hazard map. The relative and cumulative frequencies of the different damage states for each structural type and each intensity level are computed in terms of damage ratio. Damage probability matrices (DPMs) and vulnerability curves are obtained for specific structural types. A comparison analysis is fulfilled between the produced and the existing vulnerability models.展开更多
In this paper,three problems are studied and their results are presented as follows:(1)classification of seismic vulnerability for existing buildings,(2)dynamic earthquake damage matrix analysis method of buildings,an...In this paper,three problems are studied and their results are presented as follows:(1)classification of seismic vulnerability for existing buildings,(2)dynamic earthquake damage matrix analysis method of buildings,and(3)earthquake damage matrix of building in the year 2000.展开更多
Seismic damage indices of structure are widely used to quantificationally analyze structural damage levels under earthquake action. In this paper, a five-storey building model and a seventeen-storey building model are...Seismic damage indices of structure are widely used to quantificationally analyze structural damage levels under earthquake action. In this paper, a five-storey building model and a seventeen-storey building model are established. According to seven typical indices and different earthquake-inputs, a structural damage prediction is performed, with the results showing serious uncertainty of structural damage prediction due to different indices. Understanding of this phenomenon aids the comprehension and application of the results of earthquake damage prediction.展开更多
The Ms7.0 Lushan earthquake on April 20, 2013 is another destructive event in China since the Ms8.0 Wenchuan earthquake in 2008 and Ms7.1 Yushu earth- quake in 2010. A large number of strong motion recordings were acc...The Ms7.0 Lushan earthquake on April 20, 2013 is another destructive event in China since the Ms8.0 Wenchuan earthquake in 2008 and Ms7.1 Yushu earth- quake in 2010. A large number of strong motion recordings were accumulated by the National Strong Motion Obser- vation Network System of China. The maximum peak ground acceleration (PGA) at Station 51BXD in Baoxing Country is recorded as -1,005.3 cm/s2, which is even larger than the maximum one in the Wenchuan earthquake. A field survey around three typical strong motion stations confirms that the earthquake damage is consistent with the issued map of macroseismic intensity. For the oscillation period 0.3-1.0 s which is the common natural period range of the Chinese civil building, a comparison shows that the observed response spectrums are considerably smaller than the designed values in the Chinese code and this could be one of the reasons that the macroseismic intensity is lower than what we expected despite the high amplitude of PGAs. The Housner spectral intensities from 16 stations are also basically correlated with their macroseismic intensities, and the empirical distribution of spectral intensities from Lushan and Wenchuan Earthquakes under the Chinese scale is almost identical with those under the European scale.展开更多
The MS8.0 Wenchuan earthquake caused a great deal of damage and collapse to engineering structures. Survey of disaster and engineering damage was made in detail by the authors and other researchers in the extreme eart...The MS8.0 Wenchuan earthquake caused a great deal of damage and collapse to engineering structures. Survey of disaster and engineering damage was made in detail by the authors and other researchers in the extreme earthquake disaster area. The paper makes an overview of the earthquake disaster status and damage phenomena which include brick-concrete buildings, frame structures, brick-wood structures, and timber frame residential buildings. Furthermore, the causes of the disaster and building damage phenomena are briefly discussed. In addition, some typical damage phenomena are specialized. According to the phenomena mentioned above, some feasible seismic measures are suggested for the development of buildings in future.展开更多
A field damage survey of 1,005 buildings damaged by the Wenchuan Earthquake in Dujiangyan City was carried out and the resulting data was analyzed using the statistical method. It is shown that buildings that were sei...A field damage survey of 1,005 buildings damaged by the Wenchuan Earthquake in Dujiangyan City was carried out and the resulting data was analyzed using the statistical method. It is shown that buildings that were seismically designed achieved the desired seismic fortification target; they sustained less damage than the non-seismically designed buildings. Among the seismically designed buildings investigated, RC frame buildings performed the best in terms of seismic resistance. Masonry buildings with a ground story of RC frame structure were the second best, and masonry buildings performed the worst. Considering building height, multistory buildings sustained more severe damage than high-rise buildings and 2- and 3-story buildings. Compared to residential buildings, public buildings, such as schools and hospitals, suffered more severe damage.展开更多
To investigate the dynamic damage evolution characteristics of bank slopes with serrated structural planes,the shaking table model test and the numerical simulation were utilized.The main findings indicate that under ...To investigate the dynamic damage evolution characteristics of bank slopes with serrated structural planes,the shaking table model test and the numerical simulation were utilized.The main findings indicate that under continuous seismic loads,the deformation of the bank slope increased,particularly around the hydro-fluctuation belt,accompanying by the pore water pressure rising.The soil pressure increased and then decreased showed dynamic variation characteristics.As the undulation angle of the serrated structural planes increased(30°, 45°, and 60°),the failure modes were climbing,climbinggnawing,and gnawing respectively.The first-order natural frequency was used to calculate the damage degree(Dd)of the bank slope.During microseisms and small earthquakes,it was discovered that the evolution of Dd followed the“S”shape,which was fitted by a logic function.Additionally,the quadratic function was used to fit the Dd during moderately strong earthquakes.Through the numerical simulation,the variation characteristics of safety factors(Sf)for slopes with serrated structural planes and slopes with straight structural planes were compared.Under continuous seismic loads,the Sf of slopes with straight structural planes reduce stalely,whereas the Sf for slopes with serrated structural planes was greater than the former and the reduction rate was increasing.展开更多
The damage to the masonry-infilled reinforced concrete( RC) frame buildings in Charikot,the capital city of Dolakha district in Nepal,during the 2015 April-to-May Nepal earthquake sequence is reported. Most of these b...The damage to the masonry-infilled reinforced concrete( RC) frame buildings in Charikot,the capital city of Dolakha district in Nepal,during the 2015 April-to-May Nepal earthquake sequence is reported. Most of these buildings were built by the owners with little governmental inspections regarding their structural design or constructional quality. Although they generally performed better than other structural systems such as stone-masonry houses,the RC frames sustained extensive damage ranging from cracking of infill to complete collapse. In particular,eight of the 72 inspected RC frames alongside an uphill street collapsed in different ways. In addition to the un-engineered nature of these RC frames,their collapse could also be attributed to multiple technical reasons including the effect of terrain, the pounding between adjacent buildings and the accumulative damage in the earthquake sequence.展开更多
Based on the field investigation of the building types and damage caused to them by the Hutubi M_S6.2 earthquake on December 8,2016,we analyzed the damage characteristics and causes for different types of buildings. I...Based on the field investigation of the building types and damage caused to them by the Hutubi M_S6.2 earthquake on December 8,2016,we analyzed the damage characteristics and causes for different types of buildings. In conclusion we put forward some suggestions for the restoration and reconstruction in the earthquake affected area in future.展开更多
This article deals with the results of the research on the behaviors of the rural buildings made up of local materials during earthquakes. This article reveals the mechanical properties of masonry detected based on ex...This article deals with the results of the research on the behaviors of the rural buildings made up of local materials during earthquakes. This article reveals the mechanical properties of masonry detected based on experimental research results on wall samples made of local materials such as mud bricks, clay and straw mixture, rubble stones and limestones cut in standard sizes. In addition, the constructive measures prepared for the earthquake resistance of rural structures and the application techniques of these buildings in common construction are also generalized in this article.展开更多
To obtain a detailed model of the three-dimensional ground structure, the microtoremor and gravity surveys were carried out around Kurikoma area, Japan, where is the source reagion of 2008 Iwate-Miyagi nairiku earthqu...To obtain a detailed model of the three-dimensional ground structure, the microtoremor and gravity surveys were carried out around Kurikoma area, Japan, where is the source reagion of 2008 Iwate-Miyagi nairiku earthquake and is located about 90 km north of Sendai. Using the microtremor data, velocity structures of shallow sediments are estimated and the results at some of the sites are reported preliminarily. We could not find the detailed velocity structure to bedrock, because small arrays for the microtremor observation were applied, However, significant structures are observed for shallow velocity structure at some sites. Furthermore, gravity data provided Bouguer anomaly, which is one of gravity anomalies, around the target area. From the Bouguer anomaly, area with low anomaly is tbund around the south-eastern area of the fault plane.展开更多
The pre-determination of the effect of earthquake in subsurface structures is gaining importance increasingly. One of the main factors in determination of the damages due to earthquakes in subsurface structures, espec...The pre-determination of the effect of earthquake in subsurface structures is gaining importance increasingly. One of the main factors in determination of the damages due to earthquakes in subsurface structures, especially tunnels are horizontal acceleration value. The aim of the study is to put forward the scale of damage due to earthquake in a wastewater tunnel in Istanbul, the most populated city of Turkey, under construction. Possible damage caused by earthquake will be determined by utilizing the information about the route of the wastewater tunnel analyzed in the study.展开更多
As part of the 2007 Tri-Center Field Mission to Japan, a reconnaissance team comprised of fourteen graduate students and three faculty members from three U.S. earthquake engineering research centers, namely, Multidisc...As part of the 2007 Tri-Center Field Mission to Japan, a reconnaissance team comprised of fourteen graduate students and three faculty members from three U.S. earthquake engineering research centers, namely, Multidisciplinary Center for Earthquake Engineering Research (MCEER), Mid-America Earthquake Center (MAE), and Pacific Earthquake Engineering Research Center (PEER), undertook a reconnaissance visit to the affected area shortly after the 2007 Niigata- Chuetsu Oki earthquake. This mission provided an opportunity to review the nature of the earthquake damage that occurred, as well as to assess the significance of the damage from an educational perspective. This paper reports on the seismological characteristics of the earthquake, preliminary findings of geotechnical and structural damage, and the causes of the observed failures or collapses. In addition, economic and socio-economic considerations and experiences to enhance earthquake resilience are presented.展开更多
Past earthquake disasters in Greece, during the last thirty years, demonstrate that the severity of destruction is not only due to the intensity of the seismic event but also to the urbanization of the affected region...Past earthquake disasters in Greece, during the last thirty years, demonstrate that the severity of destruction is not only due to the intensity of the seismic event but also to the urbanization of the affected region and the vulnerability of certain types of buildings. Considerable damage was sustained by both old unreinforced masonry structures as well as by relatively new multistory reinforced concrete structures with "soft story" at their ground floor level. The most important observations made during six past earthquake disasters are presented in a summary form and discussed. The most remarkable case of extensive structural damage was caused from the resent Athens 1999 earthquake. The consequent discussion focuses on the following issues: (1) Classification of structural damage and their underlying causes. (2) Repair and strengthening of damaged structures. (3) Upgrade the seismic design. (4) Plans for earthquake preparedness. (5) Assessing the vulnerability of certain type of structures (schools, hospitals, public buildings etc). (6) Education specialized in earthquake engineering. (7) The enrichment of the strong motion data base.展开更多
The 2009 L’Aquila, Italy earthquake highlighted the seismic vulnerability of historic masonry building structures due to improper "strengthening" retrofit work that has been done in the last 50 years. Italian seism...The 2009 L’Aquila, Italy earthquake highlighted the seismic vulnerability of historic masonry building structures due to improper "strengthening" retrofit work that has been done in the last 50 years. Italian seismic standards recommend the use of traditional reinforcement techniques such as replacing the original wooden roof structure with new reinforced concrete (RC) or steel elements, inserting RC tie-beams in the masonry and new RC floors, and using RC jacketing on the shear walls. The L’Aquila earthquake revealed the numerous limitations of these interventions, because they led to increased seismic forces (due to greater additional weight) and to deformation incompatibilities of the incorporated elements with the existing masonry walls. This paper provides a discussion of technical issues pertaining to the seismic retrofit of the Santa Maria di Collemaggio Basilica and in particular, the limitations of the last (2000) retrofit intervention. Considerable damage was caused to the church because of questionable actions and incorrect and improper technical choices.展开更多
The October 23, 2011 M7.2 Tabanli - Van and November 9, 2011 M5.2 Edremit - Van earthquakes caused damage in a widespread area across the Van province in Turkey. The ground motions, the damage caused by these earthqua...The October 23, 2011 M7.2 Tabanli - Van and November 9, 2011 M5.2 Edremit - Van earthquakes caused damage in a widespread area across the Van province in Turkey. The ground motions, the damage caused by these earthquakes and the recent progress related to recovery efforts are presented herein. First, the key properties of the recorded strong ground motions like spectral amplitudes and directionality are evaluated. The observed damage in the affected reinforced concrete and masonry structures are discussed. The set of common structural damage mechanisms (i.e., soft story failure, torsional response due to plan irregularity, short column failure, pull out failure, pounding) observed in the damaged buildings were identified. The relationship between the key structural properties and the extent of damage is investigated. The primary loss drivers across the region were identified to be the poor quality of workmanship and improper use of building materials. The results from the investigation suggest that a large portion of the loss could have been prevented if sufficient attention and care were given to the implementation of the design regulations and in particular to the construction practice. Lastly, the recent progress in the ongoing rebuildin~ activities is presented.展开更多
基金Scientific Research Funding of IEM under Grant No.2021EEEVL0211Natural Science Foundation of Heilongjiang Province under Grant No.JQ2021E006National Natural Science Foundation of China under Grant No.52208185。
文摘The 2022 M6.9 Menyuan earthquake caused severe damage to a high-speed railway bridge,which was designed for high-speed trains running at speeds of above 250 km/h and is located right next to the fault.Bridges of this type have been widely used for rapidly constructing the high-speed railway network,but few bridges have been tested by near-fault devastating earthquakes.The potential severe impact of the earthquake on the high-speed railway is not only the safety of the infrastructure,trains and passengers,but also economic loss due to interrupted railway use.Therefore,a field survey was carried out immediately after the earthquake to collect time-sensitive data.The damage to the bridge was carefully investigated,and quantitative analyses were conducted to better understand the mechanism of the bridge failure.It was found that seismic action perpendicular to the bridge’s longitudinal direction caused severe damage to the girders and rails,while none of the piers showed obvious deformation or cracking.The maximum values of transverse displacement,out-of-plane rotation and twisting angle of girders reached 212.6 cm,3.1 degrees and 19.9 degrees,respectively,causing severe damage to the bearing supports and anti-seismic retaining blocks.These observations provide a basis for improving the seismic design of high-speed railway bridges located in near-fault areas.
基金the National Science and Technology Supporting Program(2012BAK15B02)the National Natural Science Foundation Program(50938006)the special program for Science Field Investigation on Lushan M7.0 Earthquake from the China Earthquake Administration
文摘Severe damage to steel space structures is rarely reported when compared to other structural systems damaged during past major earthquakes around the world. Two gymnasiums of steel space structures in downtown Lushan County that were damaged during the 2013 M7.0 Lushan earthquake in China were investigated and the observations are summarized in this paper. Typical damage to these two steel space structures ranges from moderate to severe. Moderate damage includes global buckling and dislocation of bolted connections of truss members, and inelastic elongation of anchor bolts and sliding of pedestal plates of supports. Severe damage includes member fracture caused by local buckling, and fracture failure of anchor bolts and welds. The distribution of structural damage to these two structures is described in detail and future research opportunities are suggested.
基金supported by the "Wenchuan Earthquake Fault Scientific Drilling" of the National Science Foundation of China
文摘This article is to review results from scientific drilling and fault-zone trapped waves (FZTWs) at the south Longman-Shan fault (LSF) zone that ruptured in the 2008 May 12 M8 Wenchuan earthquake in Sichuan,China.Immediately after the mainshock,two Wenchuan Fault Scientific Drilling (WFSD) boreholes were drilled at WFSD-1 and WFSD-2 sites approximately 400 m and 1 km west of the surface rupture along the Yinxiu-Beichuan fault (YBF),the middle fault strand of the south LSF zone.Two boreholes met the principal slip of Wenchuan earthquake along the YBF at depths of 589-m and 1230-m,respectively.The slip is accompanied with a 100-200-m-wide zone consisting of fault gouge,breccia,cataclasite and fractures.Close to WFSD-1 site,the nearly-vertical slip of ~4.3-m with a 190-m wide zone of highly fractured rocks restricted to the hanging wall of the YBF was found at the ground surface after the Wenchuan earthquake.A dense linear seismic array was deployed across the surface rupture at this venue to record FZTWs generated by aftershocks.Observations and 3-D finite-difference simulations of FZTWs recorded at this cross-fault array and network stations close to the YBF show a distinct low-velocity zone composed by severely damaged rocks along the south LSF at seismogenic depths.The zone is several hundred meters wide along the principal slip,within which seismic velocities are reduced by ~30-55% from wall-rock velocities and with the maximum velocity reduction in the ~200-m-wide rupture core zone at shallow depth.The FZTW-inferred geometry and physical properties of the south LSF rupture zone at shallow depth are in general consistent with the results from petrological and structural analyses of cores and well log at WFSD boreholes.We interpret this remarkable low-velocity zone as being a break-down zone during dynamic rupture in the 2008 M8 earthquake.We examined the FZTWS generated by similar earthquakes before and after the 2008 mainshock and observed that seismic velocities within fault core zone was reduced by ~10% due to severe damage of fault rocks during the M8 mainshock.Scientific drilling and locations of aftershocks generating prominent FZTWs also indicate rupture bifurcation along the YBF and the Anxian-Guangxian fault (AGF),two strands of the south LSF at shallow depth.A combination of seismic,petrologic and geologic study at the south LSF leads to further understand the relationship between the fault-zone structure and rupture dynamics,and the amplification of ground shaking strength along the low-velocity fault zone due to its waveguide effect.
基金Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant No.2014B-01China Postdoctoral Science Foundation under Grant No.2013M531083+3 种基金Natural Science Foundation of Hei Longjiang Province of China under Grant No.LC2012C32National Natural Science Foundation of China under Grant Nos.513085115150853551208234
文摘On 3 August 2014, the Ludian earthquake struck northwest Yunnan Province with a surface wave magnitude of 6.5. This moderate earthquake unexpectedly caused high fatalities and great economic loss. Four strong motion stations were located in the areas with intensity V, VI, VII and IX, near the epicentre. The characteristics of the ground motion are discussed herein, including 1) ground motion was strong at a period of less than 1.4 s, which covered the natural vibration period of a large number of structures; and 2) the release energy was concentrated geographically. Based on materials collected during emergency building inspections, the damage patterns of adobe, masonry, timber frame and reinforced concrete (RC) frame structures in areas with different intensities are summarised. Earthquake damage matrices of local buildings are also given for fragility evaluation and earthquake damage prediction. It is found that the collapse ratios of RC frame and confined masonry structures based on the new design code are significantly lower than non-seismic buildings. However, the RC frame structures still failed to achieve the 'strong column, weak beam' design target. Traditional timber frame structures with a light infill wall showed good aseismic performance.
文摘A comprehensive study is presented for empirical seismic vulnerability assessment of typical structural types, representative of the building stock of Southern Europe, based on a large set of damage statistics. The observational database was obtained from post-earthquake surveys carried out in the area struck by the September 7, 1999 Athens earthquake. After analysis of the collected observational data, a unified damage database has been created which comprises 180,945 damaged buildings from/after the near-field area of the earthquake. The damaged buildings are classified in specific structural types, according to the materials, seismic codes and construction techniques in Southern Europe. The seismic demand is described in terms of both the regional macroseismic intensity and the ratio αg/ao, where αg is the maximum peak ground acceleration (PGA) of the earthquake event and ao is the unique value PGA that characterizes each municipality shown on the Greek hazard map. The relative and cumulative frequencies of the different damage states for each structural type and each intensity level are computed in terms of damage ratio. Damage probability matrices (DPMs) and vulnerability curves are obtained for specific structural types. A comparison analysis is fulfilled between the produced and the existing vulnerability models.
文摘In this paper,three problems are studied and their results are presented as follows:(1)classification of seismic vulnerability for existing buildings,(2)dynamic earthquake damage matrix analysis method of buildings,and(3)earthquake damage matrix of building in the year 2000.
基金sponsored by the National Basic Research Programof China (2006BAC13B02)the Science and Technology Special Program for Seismology, China Earthquake Administration (200708003)
文摘Seismic damage indices of structure are widely used to quantificationally analyze structural damage levels under earthquake action. In this paper, a five-storey building model and a seventeen-storey building model are established. According to seven typical indices and different earthquake-inputs, a structural damage prediction is performed, with the results showing serious uncertainty of structural damage prediction due to different indices. Understanding of this phenomenon aids the comprehension and application of the results of earthquake damage prediction.
基金supported by Science Foundation of Institute of Engineering Mechanics,CEA under Grant No.2013C03National Natural Science Fund Nos.51308515 and 51278473Nonprofit Industry Research Project of CEA under Grant No.201208014
文摘The Ms7.0 Lushan earthquake on April 20, 2013 is another destructive event in China since the Ms8.0 Wenchuan earthquake in 2008 and Ms7.1 Yushu earth- quake in 2010. A large number of strong motion recordings were accumulated by the National Strong Motion Obser- vation Network System of China. The maximum peak ground acceleration (PGA) at Station 51BXD in Baoxing Country is recorded as -1,005.3 cm/s2, which is even larger than the maximum one in the Wenchuan earthquake. A field survey around three typical strong motion stations confirms that the earthquake damage is consistent with the issued map of macroseismic intensity. For the oscillation period 0.3-1.0 s which is the common natural period range of the Chinese civil building, a comparison shows that the observed response spectrums are considerably smaller than the designed values in the Chinese code and this could be one of the reasons that the macroseismic intensity is lower than what we expected despite the high amplitude of PGAs. The Housner spectral intensities from 16 stations are also basically correlated with their macroseismic intensities, and the empirical distribution of spectral intensities from Lushan and Wenchuan Earthquakes under the Chinese scale is almost identical with those under the European scale.
基金sponsored by the Basic R&D Fund for Central Level Public Service Research Institute,China (2006A02)
文摘The MS8.0 Wenchuan earthquake caused a great deal of damage and collapse to engineering structures. Survey of disaster and engineering damage was made in detail by the authors and other researchers in the extreme earthquake disaster area. The paper makes an overview of the earthquake disaster status and damage phenomena which include brick-concrete buildings, frame structures, brick-wood structures, and timber frame residential buildings. Furthermore, the causes of the disaster and building damage phenomena are briefly discussed. In addition, some typical damage phenomena are specialized. According to the phenomena mentioned above, some feasible seismic measures are suggested for the development of buildings in future.
文摘A field damage survey of 1,005 buildings damaged by the Wenchuan Earthquake in Dujiangyan City was carried out and the resulting data was analyzed using the statistical method. It is shown that buildings that were seismically designed achieved the desired seismic fortification target; they sustained less damage than the non-seismically designed buildings. Among the seismically designed buildings investigated, RC frame buildings performed the best in terms of seismic resistance. Masonry buildings with a ground story of RC frame structure were the second best, and masonry buildings performed the worst. Considering building height, multistory buildings sustained more severe damage than high-rise buildings and 2- and 3-story buildings. Compared to residential buildings, public buildings, such as schools and hospitals, suffered more severe damage.
基金supported by the National Natural Science Foundation of China(No.41972266)the China Postdoctoral Science Foundation(No.2023M730432)+1 种基金the Special Funding for Chongqing Postdoctoral Research Project(No.2022CQBSHTB1010)the Chongqing Postdoctoral Science Foundation(No.CSTB2023NSCQBHX0223).
文摘To investigate the dynamic damage evolution characteristics of bank slopes with serrated structural planes,the shaking table model test and the numerical simulation were utilized.The main findings indicate that under continuous seismic loads,the deformation of the bank slope increased,particularly around the hydro-fluctuation belt,accompanying by the pore water pressure rising.The soil pressure increased and then decreased showed dynamic variation characteristics.As the undulation angle of the serrated structural planes increased(30°, 45°, and 60°),the failure modes were climbing,climbinggnawing,and gnawing respectively.The first-order natural frequency was used to calculate the damage degree(Dd)of the bank slope.During microseisms and small earthquakes,it was discovered that the evolution of Dd followed the“S”shape,which was fitted by a logic function.Additionally,the quadratic function was used to fit the Dd during moderately strong earthquakes.Through the numerical simulation,the variation characteristics of safety factors(Sf)for slopes with serrated structural planes and slopes with straight structural planes were compared.Under continuous seismic loads,the Sf of slopes with straight structural planes reduce stalely,whereas the Sf for slopes with serrated structural planes was greater than the former and the reduction rate was increasing.
基金jointly sponsored by the Scientific Research Fund of Engineering Mechanics,China Earthquake Administration(2016A05)the grant from the National Natural Science Foundation of China(51478441)
文摘The damage to the masonry-infilled reinforced concrete( RC) frame buildings in Charikot,the capital city of Dolakha district in Nepal,during the 2015 April-to-May Nepal earthquake sequence is reported. Most of these buildings were built by the owners with little governmental inspections regarding their structural design or constructional quality. Although they generally performed better than other structural systems such as stone-masonry houses,the RC frames sustained extensive damage ranging from cracking of infill to complete collapse. In particular,eight of the 72 inspected RC frames alongside an uphill street collapsed in different ways. In addition to the un-engineered nature of these RC frames,their collapse could also be attributed to multiple technical reasons including the effect of terrain, the pounding between adjacent buildings and the accumulative damage in the earthquake sequence.
基金sponsored by the Key Youth Emergency Task,China Earthquake Administration(CEA_EDEM_201620)
文摘Based on the field investigation of the building types and damage caused to them by the Hutubi M_S6.2 earthquake on December 8,2016,we analyzed the damage characteristics and causes for different types of buildings. In conclusion we put forward some suggestions for the restoration and reconstruction in the earthquake affected area in future.
文摘This article deals with the results of the research on the behaviors of the rural buildings made up of local materials during earthquakes. This article reveals the mechanical properties of masonry detected based on experimental research results on wall samples made of local materials such as mud bricks, clay and straw mixture, rubble stones and limestones cut in standard sizes. In addition, the constructive measures prepared for the earthquake resistance of rural structures and the application techniques of these buildings in common construction are also generalized in this article.
文摘To obtain a detailed model of the three-dimensional ground structure, the microtoremor and gravity surveys were carried out around Kurikoma area, Japan, where is the source reagion of 2008 Iwate-Miyagi nairiku earthquake and is located about 90 km north of Sendai. Using the microtremor data, velocity structures of shallow sediments are estimated and the results at some of the sites are reported preliminarily. We could not find the detailed velocity structure to bedrock, because small arrays for the microtremor observation were applied, However, significant structures are observed for shallow velocity structure at some sites. Furthermore, gravity data provided Bouguer anomaly, which is one of gravity anomalies, around the target area. From the Bouguer anomaly, area with low anomaly is tbund around the south-eastern area of the fault plane.
文摘The pre-determination of the effect of earthquake in subsurface structures is gaining importance increasingly. One of the main factors in determination of the damages due to earthquakes in subsurface structures, especially tunnels are horizontal acceleration value. The aim of the study is to put forward the scale of damage due to earthquake in a wastewater tunnel in Istanbul, the most populated city of Turkey, under construction. Possible damage caused by earthquake will be determined by utilizing the information about the route of the wastewater tunnel analyzed in the study.
基金Supported by: U.S. National Science Foundation to the Multidisciplinary Center for Earthquake Engineering Research Under Grant No. EEC 9701471
文摘As part of the 2007 Tri-Center Field Mission to Japan, a reconnaissance team comprised of fourteen graduate students and three faculty members from three U.S. earthquake engineering research centers, namely, Multidisciplinary Center for Earthquake Engineering Research (MCEER), Mid-America Earthquake Center (MAE), and Pacific Earthquake Engineering Research Center (PEER), undertook a reconnaissance visit to the affected area shortly after the 2007 Niigata- Chuetsu Oki earthquake. This mission provided an opportunity to review the nature of the earthquake damage that occurred, as well as to assess the significance of the damage from an educational perspective. This paper reports on the seismological characteristics of the earthquake, preliminary findings of geotechnical and structural damage, and the causes of the observed failures or collapses. In addition, economic and socio-economic considerations and experiences to enhance earthquake resilience are presented.
文摘Past earthquake disasters in Greece, during the last thirty years, demonstrate that the severity of destruction is not only due to the intensity of the seismic event but also to the urbanization of the affected region and the vulnerability of certain types of buildings. Considerable damage was sustained by both old unreinforced masonry structures as well as by relatively new multistory reinforced concrete structures with "soft story" at their ground floor level. The most important observations made during six past earthquake disasters are presented in a summary form and discussed. The most remarkable case of extensive structural damage was caused from the resent Athens 1999 earthquake. The consequent discussion focuses on the following issues: (1) Classification of structural damage and their underlying causes. (2) Repair and strengthening of damaged structures. (3) Upgrade the seismic design. (4) Plans for earthquake preparedness. (5) Assessing the vulnerability of certain type of structures (schools, hospitals, public buildings etc). (6) Education specialized in earthquake engineering. (7) The enrichment of the strong motion data base.
基金European Community’s Seventh Framework Programme (Marie Curie International Reintegration Actions - FP7/2007-2013) under Grant No. PIRG06-GA-2009-256316 of the project ICRED - Integrated European Disaster Community Resilience
文摘The 2009 L’Aquila, Italy earthquake highlighted the seismic vulnerability of historic masonry building structures due to improper "strengthening" retrofit work that has been done in the last 50 years. Italian seismic standards recommend the use of traditional reinforcement techniques such as replacing the original wooden roof structure with new reinforced concrete (RC) or steel elements, inserting RC tie-beams in the masonry and new RC floors, and using RC jacketing on the shear walls. The L’Aquila earthquake revealed the numerous limitations of these interventions, because they led to increased seismic forces (due to greater additional weight) and to deformation incompatibilities of the incorporated elements with the existing masonry walls. This paper provides a discussion of technical issues pertaining to the seismic retrofit of the Santa Maria di Collemaggio Basilica and in particular, the limitations of the last (2000) retrofit intervention. Considerable damage was caused to the church because of questionable actions and incorrect and improper technical choices.
文摘The October 23, 2011 M7.2 Tabanli - Van and November 9, 2011 M5.2 Edremit - Van earthquakes caused damage in a widespread area across the Van province in Turkey. The ground motions, the damage caused by these earthquakes and the recent progress related to recovery efforts are presented herein. First, the key properties of the recorded strong ground motions like spectral amplitudes and directionality are evaluated. The observed damage in the affected reinforced concrete and masonry structures are discussed. The set of common structural damage mechanisms (i.e., soft story failure, torsional response due to plan irregularity, short column failure, pull out failure, pounding) observed in the damaged buildings were identified. The relationship between the key structural properties and the extent of damage is investigated. The primary loss drivers across the region were identified to be the poor quality of workmanship and improper use of building materials. The results from the investigation suggest that a large portion of the loss could have been prevented if sufficient attention and care were given to the implementation of the design regulations and in particular to the construction practice. Lastly, the recent progress in the ongoing rebuildin~ activities is presented.