期刊文献+
共找到42,476篇文章
< 1 2 250 >
每页显示 20 50 100
The September 16, 2015 Mw 8.3 Illapel, Chile Earthquake: characteristics of tsunami wave from near-field to far-field 被引量:2
1
作者 REN Zhiyuan YUAN Ye +3 位作者 WANG Peitao FAN Tingting WANG Juncheng HOU Jingming 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第5期73-82,共10页
On September 16, 2015, an earthquake with magnitude ofMw 8.3 occurred 46 km offshore from Illapel, Chile, generating a 4.4-m local tsunami measured at Coquimbo. In this study, the characteristics of tsunami are presen... On September 16, 2015, an earthquake with magnitude ofMw 8.3 occurred 46 km offshore from Illapel, Chile, generating a 4.4-m local tsunami measured at Coquimbo. In this study, the characteristics of tsunami are presented by a combination of analysis of observations and numerical simulation based on sources of USGS and NOAA. The records of 16 DART buoys in deep water, ten tidal gauges along coasts of near-field, and ten coastal gauges in the far-field are studied by applying Fourier analyses. The numerical simulation based on nonlinear shallow water equations and nested grids is carried out to provide overall tsunami propagation scenarios, and the results match well with the observations in deep water and but not well in coasts closed to the epicenter. Due to the short distance to the epicenter and the shelf resonance of southern Peru and Chile, the maximum amplitude ranged from 0.1 m to 2 m, except for Coquimbo. In deep water, the maximum amplitude of buoys decayed from 9.8 cm to 0.8 cm, suggesting a centimeter-scale Pacific-wide tsunami, while the governing period was 13-17 min and 32 min. Whereas in the far-field coastal region, the tsunami wave amplified to be around 0.2 m to 0.8 m, mostly as a result of run-up effect and resonance from coast reflection. Although the tsunami was relatively moderate in deep water, it still produced non-negligible tsunami hazards in local region and the coasts of farfield. 展开更多
关键词 2015 Illapel earthquake tsunami observation numerical modeling FAR-FIELD NEAR-FIELD
下载PDF
Determination of the Scale of Damage in the Wastewater Tunnels Due to Earthquake: A Case Study
2
作者 Turgay Cosgun Cagatay Turgutt +1 位作者 Baris Sayin Ahmet Cosgun 《Journal of Civil Engineering and Architecture》 2013年第11期1398-1404,共7页
The pre-determination of the effect of earthquake in subsurface structures is gaining importance increasingly. One of the main factors in determination of the damages due to earthquakes in subsurface structures, espec... The pre-determination of the effect of earthquake in subsurface structures is gaining importance increasingly. One of the main factors in determination of the damages due to earthquakes in subsurface structures, especially tunnels are horizontal acceleration value. The aim of the study is to put forward the scale of damage due to earthquake in a wastewater tunnel in Istanbul, the most populated city of Turkey, under construction. Possible damage caused by earthquake will be determined by utilizing the information about the route of the wastewater tunnel analyzed in the study. 展开更多
关键词 Subsurface structures TUNNELS earthquake damage scale.
下载PDF
The MW5.5 earthquake on August 6,2023,in Pingyuan,Shandong,China:A rupture on a buried fault 被引量:3
3
作者 Zhe Zhang Lisheng Xu Lihua Fang 《Earthquake Science》 2024年第1期1-12,共12页
On August 6,2023,a magnitude MW5.5 earthquake struck Pingyuan County,Dezhou City,Shandong Province,China.This event was significant as no large earthquakes had been recorded in the region for over a century,and no act... On August 6,2023,a magnitude MW5.5 earthquake struck Pingyuan County,Dezhou City,Shandong Province,China.This event was significant as no large earthquakes had been recorded in the region for over a century,and no active fault had been previously identified.This study collects 1309 P-wave arrival times and 866 S-wave arrival times from 74 seismic stations less than 200 km to the epicenter to constrain the spatial distribution of the mainshock and its 125 early aftershocks by the double difference earthquake relocation method,and selects 864 P-waveforms from 288 stations located within 800 km of the epicenter to constrain the focal mechanism solution of the mainshock through centroid moment tensor inversion.The relocation and the inversion indicate,the Pingyuan MW5.5 earthquake was caused by a rupture on a buried fault,likely an extensive segment of the Gaotang fault.This buried fault exhibited a dip of approximately 75°to the northwest,with a strike of 222°,similar to the Gaotang fault.The rupture initiated at the depth of 18.6 km and propagated upward and northeastward.However,the ground surface was not broken.The total duration of the rupture was~6.0 s,releasing the scalar moment of 2.5895×1017 N·m,equivalent to MW5.54.The moment rate reached the maximum only 1.4 seconds after the rupture initiation,and the 90%scalar moment was released in the first 4.6 s.In the first 1.4 seconds of the rupture process,the rupture velocity was estimated to be 2.6 km/s,slower than the local S-wave velocity.As the rupture neared its end,the rupture velocity decreased significantly.This study provides valuable insights into the seismic characteristics of the Pingyuan MW5.5 earthquake,shedding light on the previously unidentified buried fault responsible for the seismic activity in the region.Understanding the behavior of such faults is crucial for assessing seismic hazards and enhancing earthquake preparedness in the future. 展开更多
关键词 Shandong Pingyuan MW5.5 earthquake double-difference earthquake location centroid moment tensor inversion buried fault
下载PDF
Rapid report of the December 18,2023 M_(S)6.2 Jishishan earthquake,Gansu,China 被引量:2
4
作者 Guangjie Han Danqing Dai +2 位作者 Yu Li Nan Xi Li Sun 《Earthquake Research Advances》 CSCD 2024年第2期14-21,共8页
On December 18,2023,the Jishishan area in Gansu Province was jolted by a M_(S) 6.2 earthquake,which is the most powerful seismic event that occurred throughout the year in China.The earthquake occurred along the NWtre... On December 18,2023,the Jishishan area in Gansu Province was jolted by a M_(S) 6.2 earthquake,which is the most powerful seismic event that occurred throughout the year in China.The earthquake occurred along the NWtrending Lajishan fault(LJSF),a large tectonic transformation zone.After this event,China Earthquake Networks Center(CENC)has timely published several reports about seismic sources for emergency responses.The earthquake early warning system issued the first alert 4.9 s after the earthquake occurrence,providing prompt notification that effectively mitigated panics,injuries,and deaths of residents.The near real-time focal mechanism solution indicates that this earthquake is associated with a thrust fault.The distribution of aftershocks,the rupture process,and the recorded amplitudes from seismic monitoring and GNSS stations,all suggest that the mainshock rupture predominately propagates to the northwest direction.The duration of the rupture process is~12 s,and the largest slip is located at approximately 6.3 km to the NNW from the epicenter,with a peak slip of 0.12 m at~8 km depth.Seismic station N0028 recorded the highest instrumental intensity,which is 9.4 on the Mercalli scale.The estimated intensity map shows a seismic intensity reaching up to IX near the rupture area,consistent with field survey results.The aftershocks(up to December 22,2023)are mostly distributed in the northwest direction within~20 km of the epicenter.This earthquake caused serious casualties and house collapses,which requires further investigations into the impact of this earthquake. 展开更多
关键词 earthquake early warning Focal mechanism Rupture process Real-time intensity Coseismic deformation
下载PDF
Rapid report of source parameters of 2023 M6.2 Jishishan,Gansu earthquake sequence 被引量:1
5
作者 ZhiGao Yang Jie Liu +2 位作者 YingYing Zhang Wen Yang XueMei Zhang 《Earth and Planetary Physics》 EI CAS CSCD 2024年第2期436-443,共8页
The M6.2 earthquake in Jishishan,Gansu Province,on December 18,2023,caused extraordinary earthquake disasters.It was located in the northern part of the north−south seismic zone,which is a key area for earthquake moni... The M6.2 earthquake in Jishishan,Gansu Province,on December 18,2023,caused extraordinary earthquake disasters.It was located in the northern part of the north−south seismic zone,which is a key area for earthquake monitoring in China.The newly built dense strong motion stations in this area provide unprecedented conditions for high-precision earthquake relocation,especially the earthquake focal depth.This paper uses the newly built strong motion and traditional broadband seismic networks to relocate the source locations of the M3.0 and above aftershocks and to invert their focal mechanisms.The horizontal error of earthquake location is estimated to be 0.5−1 km,and the vertical error is 1−2 km.The focal depth range of aftershocks is 9.6−14.6 km,distributed in a 12-km-long strip with SSE direction.Aftershocks in the south are more concentrated horizontally and vertically,while aftershocks in the north are more scattered.The focal mechanisms of the main shock and aftershocks are relatively consistent,and the P-axis orientation is consistent with the regional strain direction.There is a seismic blank area of M3.0 and above,about 3−5 km between the main shock and aftershocks.It is suggested that the energy released by the main shock rupture is concentrated in this area.Based on the earthquake location and focal mechanism of the main shock,it is inferred that the Northern Lajishan fault zone is the seismogenic structure of the main shock,and the main shock did not occur on the main fault,but on a secondary fault.The initial rupture depth and centroid depth of the main shock were 12.8 and 14.0 km,respectively.The source rupture depth may not be the main reason for the severe earthquake disaster. 展开更多
关键词 Jishishan earthquake earthquake relocation focal mechanism strong motion data
下载PDF
Seismic response of a mid-story isolated structure considering SSI in mountainous areas under long-period earthquakes 被引量:1
6
作者 Wan Feng Qin Shengwu +7 位作者 Liu Dewen Zhao Tiange Zheng Yanping Shan Hang Li Zhiang Peng Fusong Xu Jingran Lei Min 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期151-161,共11页
At present,there is not much research on mid-story isolated structures in mountainous areas.In this study,a model of a mid-story isolated structure considering soil-structure interaction(SSI)in mountainous areas is es... At present,there is not much research on mid-story isolated structures in mountainous areas.In this study,a model of a mid-story isolated structure considering soil-structure interaction(SSI)in mountainous areas is established along with a model that does not consider SSI.Eight long-period earthquake waves and two ordinary earthquake waves are selected as inputs for the dynamic time history analysis of the structure.The results show that the seismic response of a mid-story isolated structure considering SSI in mountainous areas can be amplified when compared with a structure that does not consider SSI.The structure response under long-period earthquakes is larger than that of ordinary earthquakes.The structure response under far-field harmonic-like earthquakes is larger than that of near-fault pulse-type earthquakes.The structure response under near-fault pulse-type earthquakes is larger than that of far-field non-harmonic earthquakes.When subjected to long-period earthquakes,the displacement of the isolated bearings exceeded the limit value,which led to instability and overturning of the structure.The structure with dampers in the isolated story could adequately control the nonlinear response of the structure,effectively reduce the displacement of the isolated bearings,and provide a convenient,efficient and economic method not only for new construction but also to retrofit existing structures. 展开更多
关键词 SSI in mountainous areas long-period earthquakes mid-story isolated structure structural dynamic analysis
下载PDF
Rapid rupture characterization for the 2023 M_(S)6.2 Jishishan earthquake 被引量:1
7
作者 Xiongwei Tang Rumeng Guo +5 位作者 Yijun Zhang Kun Dai Jianqiao Xu Jiangcun Zhou Mingqiang Hou Heping Sun 《Earthquake Research Advances》 CSCD 2024年第2期22-26,共5页
On December 18, 2023, the M_(S)6.2 Jishishan earthquake occurred in the northeastern region of the QinghaiXizang Plateau, causing heavy casualties and property damage in Gansu and Qinghai Provinces. In this study,we i... On December 18, 2023, the M_(S)6.2 Jishishan earthquake occurred in the northeastern region of the QinghaiXizang Plateau, causing heavy casualties and property damage in Gansu and Qinghai Provinces. In this study,we integrate space imaging geodesy, finite fault inversion, and back-projection methods to decipher its rupture property, including fault geometry, coseismic slip distribution, rupture direction, and propagation speed. The results reveal that the seismogenic fault dips to the southwest at an angle of 29°. The major slip asperity is dominated by reverse slip and is concentrated within a depth range of 7–16 km, which explains the significant uplift near the epicenter observed by both the Sentinel-1 ascending and descending In SAR data. Moreover, the teleseismic array waveforms indicate a northwest propagating rupture with an overall slow rupture velocity of~1.91 km/s(AK array) or 1.01 km/s(AU array). 展开更多
关键词 Jishishan earthquake Rupture property Space imaging geodesy Finite fault inversion Back-projection method
下载PDF
Characterization and spatial analysis of coseismic landslides triggered by the Luding Ms 6.8 earthquake in the Xianshuihe fault zone, Southwest China
8
作者 GUO Changbao LI Caihong +10 位作者 YANG Zhihua NI Jiawei ZHONG Ning WANG Meng YAN Yiqiu SONG Deguang ZHANG Yanan ZHANG Xianbing WU Ruian CAO Shichao SHAO Weiwei 《Journal of Mountain Science》 SCIE CSCD 2024年第1期160-181,共22页
On September 5, 2022, a magnitude Ms 6.8 earthquake occurred along the Moxi fault in the southern part of the Xianshuihe fault zone located in the southeastern margin of the Tibetan Plateau,resulting in severe damage ... On September 5, 2022, a magnitude Ms 6.8 earthquake occurred along the Moxi fault in the southern part of the Xianshuihe fault zone located in the southeastern margin of the Tibetan Plateau,resulting in severe damage and substantial economic loss. In this study, we established a coseismic landslide database triggered by Luding Ms 6.8 earthquake, which includes 4794 landslides with a total area of 46.79 km^(2). The coseismic landslides primarily consisted of medium and small-sized landslides, characterized by shallow surface sliding. Some exhibited characteristics of high-position initiation resulted in the obstruction or partial obstruction of rivers, leading to the formation of dammed lakes. Our research found that the coseismic landslides were predominantly observed on slopes ranging from 30° to 50°, occurring at between 1000 m and 2500 m, with slope aspects varying from 90° to 180°. Landslides were also highly developed in granitic bodies that had experienced structural fracturing and strong-tomoderate weathering. Coseismic landslides concentrated within a 6 km range on both sides of the Xianshuihe and Daduhe fault zones. The area and number of coseismic landslides exhibited a negative correlation with the distance to fault lines, road networks, and river systems, as they were influenced by fault activity, road excavation, and river erosion. The coseismic landslides were mainly distributed in the southeastern region of the epicenter, exhibiting relatively concentrated patterns within the IX-degree zones such as Moxi Town, Wandong River basin, Detuo Town to Wanggangping Township. Our research findings provide important data on the coseismic landslides triggered by the Luding Ms 6.8 earthquake and reveal the spatial distribution patterns of these landslides. These findings can serve as important references for risk mitigation, reconstruction planning, and regional earthquake disaster research in the earthquake-affected area. 展开更多
关键词 Luding earthquake Coseismic landslides Remote sensing interpretation Spatial distribution Xianshuihe fault earthquake fault
下载PDF
Microearthquake reveals the lithospheric structure at midocean ridges and oceanic transform faults
9
作者 Zhiteng YU Jiabiao LI Weiwei DING 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第3期697-700,共4页
Mid-ocean ridge and oceanic transforms are among the most prominent features on the seafloor surface and are crucial for understanding seafloor spreading and plate tectonic dynamics,but the deep structure of the ocean... Mid-ocean ridge and oceanic transforms are among the most prominent features on the seafloor surface and are crucial for understanding seafloor spreading and plate tectonic dynamics,but the deep structure of the oceanic lithosphere remains poorly understood.The large number of microearthquakes occurring along ridges and transforms provide valuable information for gaining an indepth view of the underlying detailed seismic structures,contributing to understanding geodynamic processes within the oceanic lithosphere.Previous studies have indicated that the maximum depth of microseismicity is controlled by the 600-℃isotherm.However,this perspective is being challenged due to increasing observations of deep earthquakes that far exceed this suggested isotherm along mid-ocean ridges and oceanic transform faults.Several mechanisms have been proposed to explain these deep events,and we suggest that local geodynamic processes(e.g.,magma supply,mylonite shear zone,longlived faults,hydrothermal vents,etc.)likely play a more important role than previously thought. 展开更多
关键词 microearthquake mid-ocean ridge oceanic transform fault oceanic lithosphere thermal structure earthquake location
下载PDF
The 2023 Turkey earthquake doublet: Earthquake relocation, seismic tomography, and stress field inversion
10
作者 HuiLi Zhan Ling Bai +3 位作者 Bagus Adi Wibowo ChaoYa Liu Kazuo Oike Yuzo Ishikawa 《Earth and Planetary Physics》 EI CAS CSCD 2024年第3期535-548,共14页
On February 6,2023,two earthquakes with magnitudes of M_(W) 7.8 and M_(W) 7.5 struck southeastern Turkey,causing significant casualties and economic losses.These seismic events occurred along the East Anatolian Fault ... On February 6,2023,two earthquakes with magnitudes of M_(W) 7.8 and M_(W) 7.5 struck southeastern Turkey,causing significant casualties and economic losses.These seismic events occurred along the East Anatolian Fault Zone,a convergent boundary between the Arabian Plate and the Anatolian Subplate.In this study,we analyze the M_(W) 7.8 and M_(W) 7.5 earthquakes by comparing their aftershock relocations,tomographic images,and stress field inversions.The earthquakes were localized in the upper crust and exhibited steep dip angles.Furthermore,the aftershocks occurred either close to the boundaries of low and high P-wave velocity anomaly zones or within the low P-wave velocity anomaly zones.The East Anatolia Fault,associated with the M_(W) 7.8 earthquake,and the SürgüFault,related to the M_(W) 7.5 earthquake,predominantly experienced shear stress.However,their western sections experienced a combination of strike-slip and tensile stresses in addition to shear stress.The ruptures of the M_(W) 7.8 and M_(W) 7.5 earthquakes appear to have bridged a seismic gap that had seen sparse seismicity over the past 200 years prior to the 2023 Turkey earthquake sequence. 展开更多
关键词 Turkey earthquake doublet earthquake relocation seismic tomography stress field SEISMICITY
下载PDF
Analytical Solution and Simplified Formula for Added Mass of Horizontal and Vertical Motions of Truncated Cylinders Under Earthquake Action
11
作者 WANG Pi-guang LYU Si-yu +2 位作者 QU Yang ZHAO Mi DU Xiu-li 《China Ocean Engineering》 SCIE EI CSCD 2024年第1期54-67,共14页
This paper investigates the hydrodynamic characteristics of floating truncated cylinders undergoing horizontal and vertical motions due to earthquake excitations in the finite water depth.The governing equation of the... This paper investigates the hydrodynamic characteristics of floating truncated cylinders undergoing horizontal and vertical motions due to earthquake excitations in the finite water depth.The governing equation of the hydrodynamic pressure acting on the cylinder is derived based on the radiation theory with the inviscid and incompressible assumptions.The governing equation is solved by using the method of separating variables and analytical solutions are obtained by assigning reasonable boundary conditions.The analytical result is validated by a numerical model using the exact artificial boundary simulation of the infinite water.The main variation and distribution characteristics of the hydrodynamic pressure acting on the side and bottom of the cylinder are analyzed for different combinations of wide-height and immersion ratios.The added mass coefficient of the cylinder is calculated by integrating the hydrodynamic pressure and simplified formulas are proposed for engineering applications.The calculation results show that the simplified formulas are in good agreement with the analytical solutions. 展开更多
关键词 earthquake hydrodynamic pressure truncated cylinder added mass simplified formula
下载PDF
Identification of earthquake induced structural damage based on synchroextracting transform
12
作者 Roshan Kumar Gaurav Kumar +4 位作者 Wei Zhao Arvind R Yadav Gang Yu Jayendra Kumar Evans Amponsah 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期475-487,共13页
Several popular time-frequency techniques,including the Wigner-Ville distribution,smoothed pseudo-Wigner-Ville distribution,wavelet transform,synchrosqueezing transform,Hilbert-Huang transform,and Gabor-Wigner transfo... Several popular time-frequency techniques,including the Wigner-Ville distribution,smoothed pseudo-Wigner-Ville distribution,wavelet transform,synchrosqueezing transform,Hilbert-Huang transform,and Gabor-Wigner transform,are investigated to determine how well they can identify damage to structures.In this work,a synchroextracting transform(SET)based on the short-time Fourier transform is proposed for estimating post-earthquake structural damage.The performance of SET for artificially generated signals and actual earthquake signals is examined with existing methods.Amongst other tested techniques,SET improves frequency resolution to a great extent by lowering the influence of smearing along the time-frequency plane.Hence,interpretation and readability with the proposed method are improved,and small changes in the time-varying frequency characteristics of the damaged buildings are easily detected through the SET method. 展开更多
关键词 CROSS-TERM damage detection earthquake signal synchroextracting transform TIME-FREQUENCY
下载PDF
Co-seismic surface displacement of the June 21, 2022 M_(W)6 Khōst,Afghanistan earthquake from InSAR observations
13
作者 Prohelika Dalal Batakrushna Senapati Bhaskar Kundu 《Geodesy and Geodynamics》 EI CSCD 2024年第3期201-208,共8页
A robust estimation of the earthquake location, seismic moment, and fault geometry is essential for objective seismic hazard assessment. Seismic events in a remote location, specifically in the absence of seismic and ... A robust estimation of the earthquake location, seismic moment, and fault geometry is essential for objective seismic hazard assessment. Seismic events in a remote location, specifically in the absence of seismic and GNSS networks, can be investigated effectively using the In SAR-based technique. This study adopts the Differential Interferometric SAR(DIn SAR) technique to quantify the co-seismic surface displacement caused by the June 21, 2022, Khōst M_(W)6 earthquake that occurred along the western plate boundary between the Indian and Eurasian plate. The interferograms show that the maximum surface deformation occurred on the northwest and southwest of the fault line. From coherence, the Line of Sight(LOS) displacement, and the co-seismic surface displacement analysis, it has been observed that surface deformation was most pronounced in the southwest region of the fault line, and the surface has moved to the opposite direction along the fault line, which indicates a sinistral slightly oblique strike-slip movement. This In SAR-based observation appears consistent with the seismic waveforms derived from co-seismic surface displacements. Further, it has been argued that the slip deficit accumulated during the period of the last about 48 years along the frontal region of the northward extension of the Suleiman range and associated fault zone is qualitatively estimated at about 1.5 m, which is consistent with the seismic waveforms derived finite slip model. 展开更多
关键词 Seismic hazard Khōst earthquake DINSAR Slip deficit LOS displacement Finite slip model
下载PDF
Airblast evolution initiated by Wangjiayan landslides in the M_(s)8.0 Wenchuan earthquake and its destructive capacity analysis
14
作者 Yu-feng Wang Qian-gong Cheng Qi Zhu 《China Geology》 CAS CSCD 2024年第2期237-247,共11页
Airblasts,as one common phenomenon accompanied by rapid movements of landslides or rock/snow avalanches,commonly result in catastrophic damages and are attracting more and more scientific attention.To quantitatively a... Airblasts,as one common phenomenon accompanied by rapid movements of landslides or rock/snow avalanches,commonly result in catastrophic damages and are attracting more and more scientific attention.To quantitatively analyze the intensity of airblast initiated by landslides,the Wangjiayan landslide,occurred in the Wenchuan earthquake,is selected here with the landslide propagation and airblast evolution being studied using FLUENT by introducing the Voellmy rheological law.The results reveal that:(1)For the Wangjiayan landslide,its whole travelling duration is only 12 s with its maximum velocity reaching 36 m/s at t=10 s;(2)corresponding to the landslide propagation,the maximum velocity,28 m/s,of the airblast initiated by the landslide also appears at t=10 s with its maximum pressure reaching594.8 Pa,which is equivalent to violent storm;(3)under the attack of airblast,the load suffered by buildings in the airblast zone increases to 1300 Pa at t=9.4 s and sharply decreased to-7000 Pa as the rapid decrease of the velocity of the sliding mass at t=10 s,which is seriously unfavorable for buildings and might be the key reason for the destructive collapse of buildings in the airblast zone of the Wangjiayan landslide. 展开更多
关键词 LANDSLIDE Voellmy rheological law 3D FLUENT simulation Airblast Intensity Building destructive collapse Wenchuan earthquake Geological hazards survey engineering
下载PDF
Reactive Transport Process of Earthquake-induced Hydrochemical Changes in Guanding Thermal Spring,Western Sichuan,China
15
作者 NA Jin JIANG Xue +1 位作者 SHI Zheming CHEN Yanmei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第1期241-249,共9页
Earthquake-related hydrochemical changes in thermal springs have been widely observed;however,quantitative modeling of the reactive transport process is absent.In the present study,we apply reactive transport simulati... Earthquake-related hydrochemical changes in thermal springs have been widely observed;however,quantitative modeling of the reactive transport process is absent.In the present study,we apply reactive transport simulation to capture the hydrochemical responses in a thermal spring following the Wenchuan Ms 8.0 and Lushan Ms 7.0 earthquakes.We first constrain deep reservoir geothermal fluid compositions and temperature by multicomponent geothermometry,and then a reactive geochemical transport model is constructed to reproduce the hydrochemical evolution process.The results show that the recharge from the shallow aquifer increases gradually until it reaches a peak because of the permeability enhancement caused by the Lushan earthquake,which may be the mechanism to explain the earthquake-related hydrochemical responses.In contrast to the postseismic effect of the Wenchuan earthquake,the chemical evolution can be considered as hydrochemical anomalies related to the Lushan earthquake.This study proves that the efficient simulation of reactive transport processes is useful for investigating earthquake-related signals in hydrochemical time series. 展开更多
关键词 earthquake hydrochemical changes reactive geochemical transport model Kangding area
下载PDF
Astronomic background of global huge earthquakes at beginning of 21st century
16
作者 Hu Hui Su You-Jin 《Applied Geophysics》 SCIE CSCD 2024年第3期423-432,616,共11页
Since the beginning of the 21st century,major earthquakes have frequently occurred worldwide.To explore the impact of astronomical factors on earthquakes,in this study,the statistical analysis method of correlation is... Since the beginning of the 21st century,major earthquakes have frequently occurred worldwide.To explore the impact of astronomical factors on earthquakes,in this study,the statistical analysis method of correlation is used to systematically analyze the effects of astronomical factors,such as solar activity,Earth’s rotation,lunar declination angle,celestial tidal force,and other phenomena on M≥8 global earthquakes at the beginning of the 21st century.With regard to solar activity,this study focuses on the analysis of the 11-year and century cycles of solar activity.The causal relationship of the Earth’s rotation is not obvious in this work and previous works;in contrast,the valley period of the solar activity century cycle may be an important astronomical factor leading to the frequent occurrence of global earthquakes at the beginning of the 21st century.This topic warrants further study. 展开更多
关键词 M≥8.0 earthquake astronomical factors solar activity Earth’s rotation lunar declination angle tidal force phenomena
下载PDF
Kinematic deformation and intensity assessment of the 2021 Maduo M_(S)7.4 earthquake in Qinghai revealed by high-frequency GNSS
17
作者 Yu Li Yuebing Wang +2 位作者 Lijiang Zhao Hongbo Shi Pingping Wang 《Geodesy and Geodynamics》 EI CSCD 2024年第3期230-240,共11页
Rapid acquisition of the kinematic deformation field and seismic intensity distribution of large earthquakes is crucial for postseismic emergency rescue,disaster assessment,and future seismic risk research.The advance... Rapid acquisition of the kinematic deformation field and seismic intensity distribution of large earthquakes is crucial for postseismic emergency rescue,disaster assessment,and future seismic risk research.The advancement of GNSS observation and data processing makes it play an important role in this field,especially the high-frequency GNSS.We used the differential positioning method to calculate the 1 HZ GNSS data from 98 sites within 1000 km of the M_(S)7.4 Maduo earthquake epicenter.The kinematic deformation field and the distribution of the seismic intensity by using the peak ground velocity derived from displacement waveforms were obtained.The results show that:1)Horizontal coseismic response deformation levels ranging from 25 mm to 301 mm can be observed within a 1000 km radius from the epicenter.Coseismic response deformation on the east and west sides shows bilateral asymmetry,which markedly differs from the symmetry presented by surface rupture.2)The seismic intensity obtained through high-frequency GNSS and field investigations exhibits good consistency of the scope and orientation in the high seismic intensity area,although the former is generally slightly smaller than the latter.3)There may exist obstacles on the eastern side of the seismogenic fault.The Maduo earthquake induced a certain tectonic stress loading effect on the western Kunlun Pass-Jiangcuo fault(KPJF)and Maqin-Maqu segment,resulting in higher seismic risk in the future. 展开更多
关键词 Maduo earthquake High-frequency GNSS Kinematic deformation Seismic intensity
下载PDF
Identifying drivers of urban landuse changes in the Wenchuan earthquake- affected area by using night-time light data
18
作者 HUANG Tao DING Mingtao +2 位作者 GENG Dongxian GAO Zemin ZHENG Hao 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1140-1159,共20页
To learn the process of urban land evolution before and after an earthquake is vital to formulate the urban reconstruction control policies and recovery measures in the earthquake-stricken areas.However,spatiotemporal... To learn the process of urban land evolution before and after an earthquake is vital to formulate the urban reconstruction control policies and recovery measures in the earthquake-stricken areas.However,spatiotemporal evolution and its driving factors of urban land in earthquake-prone areas remains limited due to the scarcity of ground observation data.This research,leveraging night-time light remote sensing imagery and land cover data,conducted a comprehensive analysis of the long-term evolution characteristics of urban land in earthquake-prone areas.It introduced methodologies for assessing the socio-economic impact and the primary natural environmental factors driving urban land evolution in these regions.To validate the proposed methods,the 2008 Wenchuan earthquake-affected area in China was selected as a representative study area.The results indicated that the average Digital Number(DN)values in socio-economically impacted areas showed a trend of rising,falling,and then rising again after the earthquake.DN values in three types of damaged areas including Type Ⅱ,Type Ⅲ,and Type Ⅳ exceeded pre-earthquake levels.The analysis of determinative factors influencing urban land evolution revealed that slope and elevation were key elements in controlling urban land expansion before the earthquake,whereas factors such as slope,elevation,lithology,and faults had a stronger influence on urban land expansion after the earthquake.It can be seen that,in view of the differences in the natural conditions of regions for post-disaster reconstruction,the local government need to actively adjust and adapt to urban spatial planning,so as to leverage the scale effect of large-scale inputs of funds,facilities,human resources and other factors after the disaster,thus enhancing resilience and recovery efficiency in response to disaster impacts. 展开更多
关键词 Wenchuan earthquake Night-time lights Urban land Post-earthquake reconstruction
下载PDF
Coseismic Coulomb stress changes induced by a 2020-2021 M_(W)>7.0 Alaska earthquake sequence in and around the Shumagin gap and its influence on the Alaska-Aleutian subduction interface
19
作者 Lei Yang Jianjun Wang Caijun Xu 《Geodesy and Geodynamics》 EI CSCD 2024年第1期1-12,共12页
Three M_(W)>7.0 earthquakes in 2020-2021 occurred in the Shumagin seismic gap and its adjacent area of the Alaska-Aleutian subduction zone,including the Mw7.8 Simeonof thrust earthquake on July 22,2020,the M_(W)7.6... Three M_(W)>7.0 earthquakes in 2020-2021 occurred in the Shumagin seismic gap and its adjacent area of the Alaska-Aleutian subduction zone,including the Mw7.8 Simeonof thrust earthquake on July 22,2020,the M_(W)7.6 Sand Point strike-slip earthquake on October 19,2020,and the M_(W)8.2 Chignik thrust earthquake on July 29,2021.The spatial and temporal proximity of these three earthquakes prompts us to probe stress-triggering effects among them.Here we examine the coseismic Coulomb stress change imparted by the three earthquakes and their influence on the subduction interface.Our results show that:(1)The Simeonof earthquake has strong loading effects on the subsequent Sand Point and Chignik earthquakes,with the Coulomb stress changes of 3.95 bars and 2.89 bars,respectively.The Coulomb stress change caused by the Sand Point earthquake at the hypocenter of the Chignik earthquake is merely around 0.01 bars,suggesting the negligible triggering effect on the latter earthquake;(2)The triggering effects of the Simeonof,Sand Point,and Chignik earthquakes on aftershocks within three months are not well pronounced because of the triggering rates of 38%,14%,and 43%respectively.Other factors may have played an important role in promoting the occurrence of these aftershocks,such as the roughness of the subduction interface,the complicated velocity structure of the lithosphere,and the heterogeneous prestress therein;(3)The three earthquakes caused remarkable coseismic Coulomb stress changes at the subduction interface nearby these mainshocks,with an average Coulomb stress change of 3.2 bars in the shallow region directly inwards the trench. 展开更多
关键词 The 2020-2021 Alaska earthquake SEQUENCE Coseismic Coulomb stress change Mainshock-aftershock triggering The Alaska-Aleutian subduction interface The Shumagin gap
下载PDF
Determining the surface fault-rupture hazard zone for the Pazarcık segment of the East Anatolian fault zone through comprehensive analysis of surface rupture from the February 6,2023,Earthquake(Mw 7.7)
20
作者 Mustafa SOFTA 《Journal of Mountain Science》 SCIE CSCD 2024年第8期2646-2663,共18页
Following surface rupture observations in populated areas affected by the KahramanmaraşEarthquake(Mw 7.7)on February 6th,2023,along the Pazarcık segment of the East Anatolian Fault Zone(EAFZ),this study presents novel... Following surface rupture observations in populated areas affected by the KahramanmaraşEarthquake(Mw 7.7)on February 6th,2023,along the Pazarcık segment of the East Anatolian Fault Zone(EAFZ),this study presents novel insights into physical criteria for delineating surface fault-rupture hazard zones(SRHZs)along ruptured strike-slip faults.To achieve this objective,three trench studies across the surface rupture were conducted on the Pazarcık segment of the EAFZ to collect field data,and earthquake recurrence intervals were interpreted using Bayesian statistics from previously conducted paleoseismological trenchings.The results of the proposed model indicate that the Pazarcık segment produced five significant surface-rupturing earthquakes in the last∼11 kyr:E1:11.13±1.74 kyr,E2:7.62±1.20 kyr,E3:5.34±1.05 kyr,E4:1.82±0.93 kyr,and E5:0.35±0.11 kyr.In addition,the recurrence intervals of destructive earthquakes on the subject in question range from 0.6 kyr to 4.8 kyr.Considering that the last significant earthquake occurred in 1513,the longest time since the most recent surface fault rupturing earthquake on this particular segment was 511 years.These results indicate that,in terms of the theoretical recurrence interval of earthquakes that can create surface ruptures on the Pazarcık segment,the period in which the February 6,2023,earthquake occurred was within the end of the expected return period.As a result,the potential for a devastating earthquake in the near future is not foreseen on the same fault.Finally,the SRHZ proposed for the Pazarcık section of Gölbaşıvillage was calculated as a 61-meter-wide offset on the fault lineament to reduce the negativities that may occur in the ruptured area in the future.It is recommended to take into account this width in the settlement of this area and nearby areas. 展开更多
关键词 Surface rupture earthquake mitigation Recurrence interval Pazarcık segment East Anatolian Fault Zone(EAFZ)
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部