The relatively rapid recession of glaciers in the Himalayas and formation of moraine dammed glacial lakes(MDGLs) in the recent past have increased the risk of glacier lake outburst floods(GLOF) in the countries of Nep...The relatively rapid recession of glaciers in the Himalayas and formation of moraine dammed glacial lakes(MDGLs) in the recent past have increased the risk of glacier lake outburst floods(GLOF) in the countries of Nepal and Bhutan and in the mountainous territory of Sikkim in India. As a product of climate change and global warming, such a risk has not only raised the level of threats to the habitation and infrastructure of the region, but has also contributed to the worsening of the balance of the unique ecosystem that exists in this domain that sustains several of the highest mountain peaks of the world. This study attempts to present an up to date mapping of the MDGLs in the central and eastern Himalayan regions using remote sensing data, with an objective to analyse their surface area variations with time from 1990 through 2015, disaggregated over six episodes. The study also includes the evaluation for susceptibility of MDGLs to GLOF with the least criteria decision analysis(LCDA). Forty two major MDGLs, each having a lake surface area greater than 0.2 km2, that were identified in the Himalayan ranges of Nepal, Bhutan, and Sikkim, have been categorized according to their surface area expansion rates in space and time. The lakes have been identified as located within the elevation range of 3800 m and6800 m above mean sea level(a msl). With a total surface area of 37.9 km2, these MDGLs as a whole were observed to have expanded by an astonishing 43.6% in area over the 25 year period of this study. A factor is introduced to numerically sort the lakes in terms of their relative yearly expansion rates, based on their interpretation of their surface area extents from satellite imageries. Verification of predicted GLOF events in the past using this factor with the limited field data as reported in literature indicates that the present analysis may be considered a sufficiently reliable and rapid technique for assessing the potential bursting susceptibility of the MDGLs. The analysis also indicates that, as of now, there are eight MDGLs in the region which appear to be in highly vulnerable states and have high chances in causing potential GLOF events anytime in the recent future.展开更多
Alternation of high and low resistance sedimentary beds,active tectonics,large rivers,and slope erosion in valleys consequently resulted in landslide in dammed lakes within the Zagros range.This study presents the res...Alternation of high and low resistance sedimentary beds,active tectonics,large rivers,and slope erosion in valleys consequently resulted in landslide in dammed lakes within the Zagros range.This study presents the results in the analysis of geological and topographic data,satellite imageries,morphotectonics and hydrodynamics of drainage networks about the landslide dammed lakes.There are four landslides in central Zagros(Zagros FoldThrust Belt,ZFTB)which have formed five dammed lakes named,Seymareh,Jaidar,Shur,Shimbar,and Godar.According to the results,damming landslides occurred in the active-tectonic regions on the slopes of anticlines and in valleys with undercutting effects of rivers on their slopes consisting of alternations of loose and resistant beds.The studied landslide dams in narrow valleys are formed as a result of blocking river by sliding debris slopes and rock slides.This study also indicates the formation of Jaidar and Godar in one stage and the presence of Lake Terrace sequence in Seymareh,Shur and Shimbar lakes.The observed sequences of terrace formation in these lakes are caused by four Seymareh Landslides followed by the three-stage excavation of Shur andShimbar lakes.展开更多
Proliferation of microalgae is the result of a complex interaction between hydrological and physico-chemical variables influenced by climatic and anthropogenic factors. This study assessed algal communities in the Sam...Proliferation of microalgae is the result of a complex interaction between hydrological and physico-chemical variables influenced by climatic and anthropogenic factors. This study assessed algal communities in the Samendeni Dam Lake to serve as indicators of water quality for sustainable management of hydro-agricultural water resources. Therefore, physico-chemical parameters and microalgae were monitored in three sampling zones from November 2021 to October 2022. A comparison of physico-chemical parameters was realized between sampling zones and between seasons. CCA and RDA were used to establish the relationship between parameters and microalgae. The results show 96 species belonging to 46 genera, 30 families, 19 orders, 9 classes, and 7 phyla. Charophyta dominated microalgal communities in both dry and rainy seasons. Phytoplankton species reached 34 in the dry season and 41 in the rainy season, whereas periphyton revealed 41 species in both seasons. Phytoplankton abundances ranged from 213 to 5440 cells·mL−1 and 3 to 110 cells·cm−2 for periphyton. At p < 0.05, significant correlation of Charophyta with pH (r = 0.39, p-value = 0.04), EC (r = −0.41 - 0.91, p-value = 0.00 - 0.03), Transp (r = 0.73, p-value = 0.03), Ammo (r = 0.48, p-value = 0.01), Nitra (r = 0.81, p-value = 0.01), Nitri (r = 0.91, p-value = 0.00) was observed. Bacillariophyta significantly correlated to pH (r = 0.70, p-value = 0.04), EC (r = −0.51 - 0.94, p-value = 0.00 - 0.04), DO (r = −0.70 - 0.81, p-value = 0.01 - 0.04), Transp (r = −0.71 - 0.73, p-value = 0.02 - 0.03), Nitra (r = 0.84, p-value = 0.00) and OrthoP (r = 0.44 - 0.73, p-value = 0.02 - 0.03). Chlorophyta was significantly correlated to EC (r = −0.41 - 0.95, p-value = 0.00 - 0.03), Transp (r = −0.52, p-value = 0.01), Nitra (r = 0.71, p-value = 0.03), Ammo (r = 0.42, p-value = 0.03). Cyanophyta showed significant correlation with pH (r = 0.43, p-value = 0.02);EC (r = 0.68, p-value = 0.04), Transp (r = −0.44, p-value = 0.02), OrthoP (r = 0.44 - 0.54, p-value = 0.00 - 0.02) and Ammo (r = 0.43, p-value = 0.02). Ochrophyta significantly correlated to Nitra (r = 0.42, p-value = 0.03). While Charophyta and Chlorophyta species in the dam lake indicate relatively good water quality, recorded harmful Cyanophyta species show a possible deterioration of the habitat. Therefore, continuous water quality monitoring since the construction of dam lakes should be performed for careful water management.展开更多
Moraine-dammed lake outbursts usually threaten highways, railways, and key facilities in alpine regions. The varying amplitudes and distribution of hydrodynamic pressures significantly affect the stability of the dam....Moraine-dammed lake outbursts usually threaten highways, railways, and key facilities in alpine regions. The varying amplitudes and distribution of hydrodynamic pressures significantly affect the stability of the dam. We utilize a shaking table to investigate the development of hydrodynamic pressure caused by different sinusoidal waves and seismic Wolong wave. A series of shaking table tests indicate that the hydrodynamic pressure varia- tion significantly follows seismic acceleration wave motion. The maximum hydrodynamic pressures calculated by Westergaard's equation are compared with the experi- mental values under different waves. It is shown that the Westergaard's values are lower than the experimental ones under the sinusoidal waves. However, the Westergaard's method is able to predict the earthquake-induced hydro- dynamic pressure caused by Wolong wave in small lake with desirable accuracy.展开更多
The quantitative calculation of the volume of large earthquake-triggered landslides and related dammed lake sediments is of great significance in the study of secondary disasters and focal parameters of strong histori...The quantitative calculation of the volume of large earthquake-triggered landslides and related dammed lake sediments is of great significance in the study of secondary disasters and focal parameters of strong historical earthquakes.In this study,the dammed lake induced by Qishan M7 earthquake(Lingtai County,Gansu Province,Northwest China)is selected as the research object.Based on the information collected from the 4 boreholes in the dammed lake area,we further take advantage of the lowlevel Unmanned Aerial Vehicle(UAV)photogrammetry and the morphology recovery method,to calculate the volume of the dammed lake and landslides,respectively.Finally,major conclusions are obtained as follows:①the AMS-14C age at the bottom of the Qiuzigou Dammed Lake sediments is 2890±30 BP,which coincides with the 780 BC Qishan earthquake;furthermore,the Qiuzigou Landslides seem to have been triggered by the earthquake,forming an enclosed dammed lake deposition environment after the upstream sediments accumulate;②the Qiuzigou landslides are opposite-sliding landslides that have blocked the river valley;in detail,landslide volumes at the right and left banks are 235×104 m3 and 229×104 m3,respectively.The length of the dammed lake is 2.6 km,with a thickness of approximately 43 m near the landslides,and the total sedimentary volume is 573×104 m3;③the erosion rate of Qiuzigou Landslide Dammed Lake is 0.44 mm/a,the accumulation rate is 15.05 mm/a,and the soil erosion modulus is 593 t/(km2/a),characterized as slight erosion.Quantitative research on the formation of landslides and dammed lakes from strong historical earthquakes is vital for increasing our understanding of the vibrational characteristics and surface action processes of these types of earthquakes.展开更多
After the Wenchuan Earthquake, many large-scale debris flows blocked rivers, generated dammed lakes, and produced outburst flood at the seriously hit areas. This paper mainly discussed the formation, outburst, impacts...After the Wenchuan Earthquake, many large-scale debris flows blocked rivers, generated dammed lakes, and produced outburst flood at the seriously hit areas. This paper mainly discussed the formation, outburst, impacts and risks of debris flow dammed lakes. The field investigation showed that the dammed lakes were created by debris flows from gullies and hill-slopes as well as the combination of debris flow and landslides, and also distributed along rivers step-by-step. The height of dams and the length of dammed lakes along river channel varied from 4 m to 18 m and from 400 m to 5000 m, respectively, and the reservoir capacity of dammed lakes were from 1.5 × 105 m3 to 3 × 106 m3. Due to geomorphological impact, dammed lakes commonly partially outburst along their front of debris flow deposition dams (1/4 - /3 outburst) or the suture between debris flow and landslide, and hardly completely outburst. Moreover, the subsequent debris flows continuously increased the magnitude and height of dams, not only increasing the stability of a single dam, but also improving the risks of outburst flood induced by intensive rainstorm. Dammed lakes produced steep rage in the sites of dams with the 4% - 9% of slope and rapidly raised river channel in the upstream due to a mass of alluvial sediment. As a result, the landscapes of step-dams and step-lakes dominate driver channels, significantly increasing the hazards of floods. Then the hazards, impacts and risk of debris flow dammed lakes along Min River from Dujiangyan to Wenchuan were analyzed. In order to mitigate dammed lakes induced by debris flows, the identification model of debris flow blocking rivers, the process of the formation, outburst and evolvement of dammed lakes, and the model of risk assessment for step-dammed lakes were strongly suggested to explore, and be used at the rivers of Min, Yuzi, Caopo, Longxi, Mianyuan, Jian, Shiting, Baishui and Jushui.展开更多
In an earlier study of the Diexi ancient dammed lake along the Minjiang River in Southwest China,10 disturbed layers with envelope and flame structures were found in more than 240 m of lacustrine sediments.In this pap...In an earlier study of the Diexi ancient dammed lake along the Minjiang River in Southwest China,10 disturbed layers with envelope and flame structures were found in more than 240 m of lacustrine sediments.In this paper,the soft-sediment disturbances caused by earthquakes in the Diexi ancient dammed lake were studied based on field investigations and laboratory core observations.A two-to three-degree-of-freedom spring-type earthquake simulation vibration table was used to carry out disturbance tests on lacustrine sediments under different dynamic conditions.The results support the following conclusions:(1)The disturbance layers in the lacustrine sediments were caused by strong earthquakes in the region.(2)The characteristics of the disturbance layers are related to the seismic parameters and the degree of sediment consolidation.(3)The greater the earthquake intensity is,the greater the disturbance amplitude is;moreover,the lower the consolidation degree is,the greater the disturbance amplitude.(4)The simulation tests verify that the disturbance layers in the sediments of the Diexi ancient dammed lake correspond to strong earthquakes in the region.These results are valuable for ongoing palaeoseismic research in the region.展开更多
The Diexi ancient dammed lake is in the upper reaches of the Minjiang River.Six terraces with lacustrine sediments occur at the base.These terraces are the products of the graded outburst of the Diexi ancient dammed l...The Diexi ancient dammed lake is in the upper reaches of the Minjiang River.Six terraces with lacustrine sediments occur at the base.These terraces are the products of the graded outburst of the Diexi ancient dammed lake.The outburst of the ancient dammed lake would certainly have had an impact on the Chengdu Plain in the lower reaches of the Minjiang River.In this paper,on-site sampling and laboratory analysis were used to analyze the sediments of the Diexi ancient dammed lake and the Jinsha site in Chengdu Plain,and the environmental indicators of each sediment layer were tested.Through a comparative analysis of the environmental indicators in the sediments at the two locations,the following results were obtained:the palaeoclimatic and palaeoenvironmental characteristics at the two locations generally show consistent changes.The most important finding is that the types and content of the major pollen taxa at the two locations are similar.The Pinus content strongly proves that the soil layers at the Jinsha site was sourced from the upper reaches of the Minjiang River.Considering that the demise of the ancient culture at the Jinsha site occurred close in time to the outburst of the ancient dammed lake,this similarity suggests that the cultural change at the Jinsha site may have been related to the outburst of the Diexi ancient dammed lake.展开更多
Glacial outburst floods(GLOFs) in alpine regions tend to be relatively complicated, multi-stage catastrophes, capable of causing significant geomorphologic changes in channel surroundings and posing severe threats t...Glacial outburst floods(GLOFs) in alpine regions tend to be relatively complicated, multi-stage catastrophes, capable of causing significant geomorphologic changes in channel surroundings and posing severe threats to infrastructure and the safety and livelihoods of human communities. GLOF disasters have been observed and potential hazards can be foreseen due to the newly formed glacial lakes or the expansion of existing ones in the Poiqu River Basin in Tibet, China. Here we presented a synthesis of GLOF-related studies including triggering mechanism(s), dam breach modeling, and flood routing simulation that have been employed to reconstruct or forecast GLOF hydrographs. We provided a framework for probability-based GLOFs simulation and hazard mapping in the Poiqu River Basin according to available knowledge. We also discussed the uncertainties and challenges in the model chains, which may form the basis for further research.展开更多
The formation and evolution of glacier moraine-dammed lakes are closely related to past glacier expansion and retreat. Geomorphic markers such as lacustrine terraces and beach ridges observed in these lakes provide im...The formation and evolution of glacier moraine-dammed lakes are closely related to past glacier expansion and retreat. Geomorphic markers such as lacustrine terraces and beach ridges observed in these lakes provide important evidence for regional paleoenvironment reconstruction. We document the magnitude of paleo-shoreline fluctuations and timings of highstands of lake water by using cosmogenic 10Be surface exposure dating and optically stimulated luminescence(OSL) dating on samples collected from lacustrine sediment and bedrock strath in Lake Khagiin Khar. The lake was initially impounded by glacier moraine at the Global Last Glacial maximum(gLGM;21–19 ka), and the lake reached its maximum paleo-shoreline level of 1840 m at sea level(a.s.l.). At that time, the stored lake water amount was up to seven times greater and the surface area was three times larger than the present values. The paleolake experienced higher shoreline levels at 1832, 1822, and 1817 m a.s.l. and reached the present lake level after 0.4 ka. We interpret that decrease in the paleolake level was caused by spillover. The increase in melt water after the gLGM and the Late Glacial exceeded the storage threshold of the lake, and the paleolake water overflowed across the lowest drainage divides. The lake spilled over across the lowest bedrock ridge at 15.9 ± 0.6 ka, and the outlet was incised since that time at a rate of 3.72 ± 0.15 mm/yr. The initial stream of the Khiidiin Pass River was disturbed by LGM moraine damming and was rerouted into the present course running through moraine after the spillover at 15.9 ± 0.6 ka.展开更多
Glacier retreat is not only a symbol of temperature and precipitation change, but a dominating factor of glacial lake changes in alpine regions, which are of wide concern for high risk of potential outburst floods. Of...Glacier retreat is not only a symbol of temperature and precipitation change, but a dominating factor of glacial lake changes in alpine regions, which are of wide concern for high risk of potential outburst floods. Of all types of glacial lakes, moraine-dammed lakes may be the most dangerous to local residents in mountain regions. Thus, we monitored the dy- namics of 12 moraine-dammed glacial lakes from 1974 to 2014 in the Poiqu River Basin of central west Himalayas, as well as their associated glaciers with a combination of remote sensing, topographic maps and digital elevation models (DEMs). Our results indicate that all monitored moraine-dammed glacial lakes have expanded by 7.46 km2 in total while the glaciers retreated by a total of 15.29 km2 correspondingly. Meteorological analysis indicates a warming and drying trend in the Nyalam region from 1974 to 2014, which accelerated glacier retreat and then augmented the supply of moraine-dammed glacial lakes from glacier melt. Lake volume and water depth changed from 1974 to 2014 which indicates that lakes Kangxico, Galongco, and Youmojanco have a high potential for outburst floods and in urgent need for continuous moni- toring or artificial excavation to release water due to the quick increase in water depths and storage capacities. Lakes Jialongco and Cirenmaco, with outburst floods in 1981 and 2002, have a high potential risk for outburst floods because of rapid lake growth and steep slope gradients surrounding them.展开更多
Full operation of the Three Gorges Dam(TGD) reduces flood risk of the middle and lower parts of the Yangtze River Basin. However,Dongting Lake, which is located in the Yangtze River Basin, is still at high risk for po...Full operation of the Three Gorges Dam(TGD) reduces flood risk of the middle and lower parts of the Yangtze River Basin. However,Dongting Lake, which is located in the Yangtze River Basin, is still at high risk for potentially severe flooding in the future. The effects of the TGD on flood processes were investigated using a hydrodynamic model. The 1998 and 2010 flood events before and after the operation of the TGD, respectively, were analyzed. The numerical results show that the operation of the TGD changes flood processes, including the timing and magnitude of flood peaks in Dongting Lake. The TGD can effectively reduce the flood level in Dongting Lake, which is mainly caused by the flood water from the upper reach of the Yangtze River. This is not the case, however, for floods mainly induced by flood water from four main rivers in the catchment. In view of this, a comprehensive strategy for flood management in Dongting Lake is required. Non-engineering measures, such as warning systems and combined operation of the TGD and other reservoirs in the catchment, as well as traditional engineering measures, should be further improved. Meanwhile, a sustainable philosophy for flood control, including natural flood management and lake restoration, is recommended to reduce the flood risk.展开更多
The Confluent and Niandouba dams were built in 1984 and 1997 respectively to better control water resources, increase agricultural production and promote local development. This article studies their evolution on the ...The Confluent and Niandouba dams were built in 1984 and 1997 respectively to better control water resources, increase agricultural production and promote local development. This article studies their evolution on the Kayanga/Geba River, a transboundary river between Guinea, Senegal and Guinea-Bissau, from its impoundment to the present day. The topographic characteristics analysed through the DTMs (Digital Terrain Models) show a flat shape for the Confluent Dam Lake and long plateaus for the Niandouba Dam Lake. The cross-sections present a variety of morphologies ranging from wide U-shaped valleys with sinuous bottoms to deep V-shaped valleys. The homogenisation and reconstruction of missing values were carried out using the regional vector me<span>thod. The application of Pettitt’s statistical test on annual rainfall (1932-2019) indicates breaks of stationarity in 1967 or 1969. The post-breakage deficits range from 11.4% to 19.4%. The segmentation method corroborates the results of the Pettitt test. The variations of the surface area of the Confluent and Niandouba water bodies are linked to rainfall, evaporation and withdrawals for different uses. Their monitoring would allow for better management of ava</span>ilable water resources but also for good planning of off-season crops.展开更多
The regulation and storage capacity of Poyang Lake is infl uenced by the fl ow from the main stream of the Yangtze River and the fi ve rivers in the Poyang Lake basin.After the operation of the Three Gorges Dam(TGD),h...The regulation and storage capacity of Poyang Lake is infl uenced by the fl ow from the main stream of the Yangtze River and the fi ve rivers in the Poyang Lake basin.After the operation of the Three Gorges Dam(TGD),hydrological changes in the main stream of the Yangtze River impact water exchange between the Yangtze River and Poyang Lake.Based on the analysis of measured data and factors infl uencing outfl ow at Hukou station,a new empirical formula describing outfl ow at Hukou station and critical water level for lake storage capacity is established.The change in monthly storage capacity of Poyang Lake before and after the construction of the TGD is analyzed quantitatively.The results show that the fl ows from the main stream of the Yangtze River and the fi ve rivers in the Poyang Lake basin affect outfl ow and water storage capacity by changing the water level difference between Xingzi and Hukou stations and by changing the water level at Hukou station.But the Yangtze River and the fi ve rivers in the Poyang Lake basin differ in process and degree.If the water level at Hukou station remains consistent,when the fl ow from the fi ver rivers increases by 1,000 m3/s,the outfl ow at Hukou station increases by 304 m3/s.When the fl ow from the main stream of the Yangtze River increases by 1,000 m3/s,the outfl ow at Hukou station decreases by 724 m3/s.In addition,the operation of the TGD affects the water storage capacity of Poyang Lake.The water volume of Poyang Lake decreases by 49.4%in September,but increases by 47.7%in May.展开更多
Many moraines formed between Daduka and Chibai in the Tsangpo River valley since Middle Pleistocene. A prominent set of lacustrine and alluvial terraces on the valley margin along both the Tsangpo and Nyang Rivers for...Many moraines formed between Daduka and Chibai in the Tsangpo River valley since Middle Pleistocene. A prominent set of lacustrine and alluvial terraces on the valley margin along both the Tsangpo and Nyang Rivers formed during Quaternary glacial epoch demonstrate lakes were created by damming of the river. Research was conducted on the geological environment, contained sediments, spatial distribution, timing, and formation and destruction of these paleolakes. The lacustrine sediments 14C (10537±268 aBP at Linzhi Brick and Tile Factory, 22510±580 aBP and 13925±204 aBP at Bengga, 21096±1466 aBP at Yusong) and a series of ESR (electron spin resonance) ages at Linzhi town and previous data by other experts, paleolakes persisted for 691±305 kaBP middle Pleistocene ice age, 75-40 kaBP the early stage of last glacier, 27-8 kaBP Last Glacier Maximum (LGM), existence time of lakes gradually shorten represents glacial scale and dam moraine supply potential gradually cut down, paleolakes and dam scale also gradually diminished. This article calculated the average lacustrine sedimentary rate of Gega paleolake in LGM was 12.5 mm/a, demonstrates Mount Namjagbarwa uplifted strongly at the same time, the sedimentary rate of Gega paleolake is more larger than that of enclosed lakes of plateau inland shows the climatic variation of Mount Namjagbarwa is more larger and plateau margin uplifted more quicker than plateau inland. This article analyzed formation and decay cause about the Zelunglung glacier on the west flank of Mount Namjagbarwa got into the Tsangpo River valley and blocked it for tectonic and climatic factors. There is a site of blocking the valley from Gega to Chibai. This article according to moraines and lacustrine sediments yielded paleolakes scale: the lowest lake base altitude 2850 m, the highest lake surface altitude 3585 m, 3240 m and 3180 m, area 2885 km2, 820 km2 and 810 km2, lake maximum depth of 735 m, 390 m and 330 m. We disclose the reason that previous experts discovered there were different age moraines dividing line of altitude 3180 m at the entrance of the Tsangpo Grand Canyon is dammed lake erosive decay under altitude 3180 m moraines in the last glacier era covering moraines in the early ice age of late Pleistocene, top 3180 m in the last glacier moraine remained because ancient dammed lakes didn't erode it under 3180 m moraines in the early ice age of late Pleistocene exposed. The reason of the top elevation 3585 m moraines in the middle Pleistocene ice age likes that of altitude 3180 m. There were three times dammed lakes by glacier blocking the Tsangpo River during Quaternary glacial period. During other glacial and interglacial period the Zelunglung glacier often extended the valley but moraine supplemental speed of the dam was smaller than that of fluvial erosion and moraine movement, dam quickly disappeared and didn't form stable lake.展开更多
On August 10,2019,due to the effect of a rainstorm caused by Super Typhoon Lekima,a landslide occurred in Shanzao Village,China.It blocked the Shanzao stream,forming a barrier lake,and then the barrier lake burst.This...On August 10,2019,due to the effect of a rainstorm caused by Super Typhoon Lekima,a landslide occurred in Shanzao Village,China.It blocked the Shanzao stream,forming a barrier lake,and then the barrier lake burst.This is a rare natural disaster chain of typhoon-rainstorm-landslide-barrier lake-flooding.This study was built on field surveys,satellite image interpretation,the digital elevation model(DEM),engineering geological analysis and empirical regression.The purpose was to reveal the characteristics and causes of the landslide,the features and formation process of the barrier lake and the dam break flooding discharge.The results show that the volume of the landslide deposit is approximately 2.4×105 m3.The burst mode of the landslide dam is overtopping,which took only 22 minutes from the formation of the landslide dam to its overtopping.The dam-break peak flow was 1353 m3/s,and the average velocity was 2.8–3.0 m/s.This study shows that the strongly weathered rock and soil slope has low strength and high permeability under the condition of heavy rainfall,which reminds us the high risk of landslides and the importance of accurate early warning of landslides under heavy rainfalls in densely populated areas of Southeast China,as well as the severity of the disaster chain of typhoon-rainstorm-landslide-barrier lake-flooding.展开更多
Hazards in reservoirs and lakes arising from subaerial landslides causing impact waves(or ‘lake tsunamis’) are now well known, with several recent examples having been investigated in detail. The potential scale of ...Hazards in reservoirs and lakes arising from subaerial landslides causing impact waves(or ‘lake tsunamis’) are now well known, with several recent examples having been investigated in detail. The potential scale of such hazards was not widely known at the time of the Vaiont dam project in the 1950s and early 1960s, although a small wave triggered by a landslide at another new reservoir nearby in the Dolomites(northern Italy) drew the possible hazard to the attention of the Vaiont project’s managers. The Vaiont disaster in 1963 arose from a combination of disparate and seemingly unrelated factors and circumstances that led to an occurrence that could not have been imagined at that time. The ultimate cause was a very large landslide moving very rapidly into a reservoir and displacing the water. The resulting wave overtopped the dam to a height of around 175 m and around 2000 people were killed. This paper identifies and examines all of the issues surrounding the Vaiont dam and landslide in order to identify causal factors, contributory factors(including aggravating factors) and underlying factors. In doing so, it demonstrates that the disaster arose from the Vaiont dam project and cannot be attributed simply to the landslide. Underlying geological factors gave rise to the high speed of the landslide, which would have occurred anyway at some time. However, without the contributory factors that account for the presence of the reservoir, i.e. the choice of location for the project and management of the project with respect to a possible landslide hazard, there would have been no disaster. Indeed, the disaster could have been avoided if the reservoir could have been emptied pending further ground investigations. Understanding of this case provides many lessons for future dam projects in mountainous locations but also highlights an ongoing and perhaps under-appreciated risk from similar events involving other water bodies including geologically recent lakes formed behind natural landslide dams.展开更多
1 Introduction Lake Urmia in the northwestern corner of Iran is one of the largest permanent hypersaline lakes in the world and the largest lake in the Middle East(1,2,3).The lake was
In the current scenario,Lake Urmia,one of the vastest hyper saline lakes on the Earth,has been affected by serious environmental degradation.Using different satellite images and observational data,this study investiga...In the current scenario,Lake Urmia,one of the vastest hyper saline lakes on the Earth,has been affected by serious environmental degradation.Using different satellite images and observational data,this study investigated the changes in the lake for the period 1970–2020 based on the effects of climate change and several human-induced processes on Lake Urmia,such as population growth,excessive dam construction,low irrigation water use efficiency,poor water resources management,increased sediment flow into the lake,and lack of political and legal frameworks.The results indicated that between 1970 and 1997,the process of change in Lake Urmia was slow;however;the shrinkage was faster between 1998 and 2018,with about 30.00%of the lake area disappearing.As per the findings,anthropogenic factors had a much greater impact on Lake Urmia than climate change and prolonged drought;the mismanagement of water consumption in the agricultural sector and surface and underground water withdrawals in the basin have resulted in a sharp decrease in the lake's surface.These challenges have serious implications for water resources management in Lake Urmia Basin.Therefore,we provided a comprehensive overview of anthropogenic factors on the changes in Lake Urmia along with existing opportunities for better water resources management in Lake Urmia Basin.This study serves as a guideline framework for climate scientists and hydrologists in order to assess the effects of different factors on lake water resources and for decision-makers to formulate strategies and plans according to the management task.展开更多
This paper gives a brief introduction to the emergency handling of Tangjiashan barrier lake.Some technologies for the application of geological and topographical data are summarized and the mechanism of formation of a...This paper gives a brief introduction to the emergency handling of Tangjiashan barrier lake.Some technologies for the application of geological and topographical data are summarized and the mechanism of formation of a barrier lake is analyzed.Based on the safety status evaluation,the dam breach flood point is calculated.The paper concludes with discussion of the practical effects of emergency handling scenarios and different drainage channel designs.展开更多
文摘The relatively rapid recession of glaciers in the Himalayas and formation of moraine dammed glacial lakes(MDGLs) in the recent past have increased the risk of glacier lake outburst floods(GLOF) in the countries of Nepal and Bhutan and in the mountainous territory of Sikkim in India. As a product of climate change and global warming, such a risk has not only raised the level of threats to the habitation and infrastructure of the region, but has also contributed to the worsening of the balance of the unique ecosystem that exists in this domain that sustains several of the highest mountain peaks of the world. This study attempts to present an up to date mapping of the MDGLs in the central and eastern Himalayan regions using remote sensing data, with an objective to analyse their surface area variations with time from 1990 through 2015, disaggregated over six episodes. The study also includes the evaluation for susceptibility of MDGLs to GLOF with the least criteria decision analysis(LCDA). Forty two major MDGLs, each having a lake surface area greater than 0.2 km2, that were identified in the Himalayan ranges of Nepal, Bhutan, and Sikkim, have been categorized according to their surface area expansion rates in space and time. The lakes have been identified as located within the elevation range of 3800 m and6800 m above mean sea level(a msl). With a total surface area of 37.9 km2, these MDGLs as a whole were observed to have expanded by an astonishing 43.6% in area over the 25 year period of this study. A factor is introduced to numerically sort the lakes in terms of their relative yearly expansion rates, based on their interpretation of their surface area extents from satellite imageries. Verification of predicted GLOF events in the past using this factor with the limited field data as reported in literature indicates that the present analysis may be considered a sufficiently reliable and rapid technique for assessing the potential bursting susceptibility of the MDGLs. The analysis also indicates that, as of now, there are eight MDGLs in the region which appear to be in highly vulnerable states and have high chances in causing potential GLOF events anytime in the recent future.
文摘Alternation of high and low resistance sedimentary beds,active tectonics,large rivers,and slope erosion in valleys consequently resulted in landslide in dammed lakes within the Zagros range.This study presents the results in the analysis of geological and topographic data,satellite imageries,morphotectonics and hydrodynamics of drainage networks about the landslide dammed lakes.There are four landslides in central Zagros(Zagros FoldThrust Belt,ZFTB)which have formed five dammed lakes named,Seymareh,Jaidar,Shur,Shimbar,and Godar.According to the results,damming landslides occurred in the active-tectonic regions on the slopes of anticlines and in valleys with undercutting effects of rivers on their slopes consisting of alternations of loose and resistant beds.The studied landslide dams in narrow valleys are formed as a result of blocking river by sliding debris slopes and rock slides.This study also indicates the formation of Jaidar and Godar in one stage and the presence of Lake Terrace sequence in Seymareh,Shur and Shimbar lakes.The observed sequences of terrace formation in these lakes are caused by four Seymareh Landslides followed by the three-stage excavation of Shur andShimbar lakes.
文摘Proliferation of microalgae is the result of a complex interaction between hydrological and physico-chemical variables influenced by climatic and anthropogenic factors. This study assessed algal communities in the Samendeni Dam Lake to serve as indicators of water quality for sustainable management of hydro-agricultural water resources. Therefore, physico-chemical parameters and microalgae were monitored in three sampling zones from November 2021 to October 2022. A comparison of physico-chemical parameters was realized between sampling zones and between seasons. CCA and RDA were used to establish the relationship between parameters and microalgae. The results show 96 species belonging to 46 genera, 30 families, 19 orders, 9 classes, and 7 phyla. Charophyta dominated microalgal communities in both dry and rainy seasons. Phytoplankton species reached 34 in the dry season and 41 in the rainy season, whereas periphyton revealed 41 species in both seasons. Phytoplankton abundances ranged from 213 to 5440 cells·mL−1 and 3 to 110 cells·cm−2 for periphyton. At p < 0.05, significant correlation of Charophyta with pH (r = 0.39, p-value = 0.04), EC (r = −0.41 - 0.91, p-value = 0.00 - 0.03), Transp (r = 0.73, p-value = 0.03), Ammo (r = 0.48, p-value = 0.01), Nitra (r = 0.81, p-value = 0.01), Nitri (r = 0.91, p-value = 0.00) was observed. Bacillariophyta significantly correlated to pH (r = 0.70, p-value = 0.04), EC (r = −0.51 - 0.94, p-value = 0.00 - 0.04), DO (r = −0.70 - 0.81, p-value = 0.01 - 0.04), Transp (r = −0.71 - 0.73, p-value = 0.02 - 0.03), Nitra (r = 0.84, p-value = 0.00) and OrthoP (r = 0.44 - 0.73, p-value = 0.02 - 0.03). Chlorophyta was significantly correlated to EC (r = −0.41 - 0.95, p-value = 0.00 - 0.03), Transp (r = −0.52, p-value = 0.01), Nitra (r = 0.71, p-value = 0.03), Ammo (r = 0.42, p-value = 0.03). Cyanophyta showed significant correlation with pH (r = 0.43, p-value = 0.02);EC (r = 0.68, p-value = 0.04), Transp (r = −0.44, p-value = 0.02), OrthoP (r = 0.44 - 0.54, p-value = 0.00 - 0.02) and Ammo (r = 0.43, p-value = 0.02). Ochrophyta significantly correlated to Nitra (r = 0.42, p-value = 0.03). While Charophyta and Chlorophyta species in the dam lake indicate relatively good water quality, recorded harmful Cyanophyta species show a possible deterioration of the habitat. Therefore, continuous water quality monitoring since the construction of dam lakes should be performed for careful water management.
基金financially supported by the Natural Science Foundation of China under contract No.41571004National Key Research and Development Program(Grant No.2016YFC0802206)Research and Development Program of Science and Technology of China Railway Corporation(Grant No.2015G002-N)
文摘Moraine-dammed lake outbursts usually threaten highways, railways, and key facilities in alpine regions. The varying amplitudes and distribution of hydrodynamic pressures significantly affect the stability of the dam. We utilize a shaking table to investigate the development of hydrodynamic pressure caused by different sinusoidal waves and seismic Wolong wave. A series of shaking table tests indicate that the hydrodynamic pressure varia- tion significantly follows seismic acceleration wave motion. The maximum hydrodynamic pressures calculated by Westergaard's equation are compared with the experi- mental values under different waves. It is shown that the Westergaard's values are lower than the experimental ones under the sinusoidal waves. However, the Westergaard's method is able to predict the earthquake-induced hydro- dynamic pressure caused by Wolong wave in small lake with desirable accuracy.
基金Received on April 20th,2020revised on July 30th,2020.This project is sponsored by the National Natural Science Foundation of China(42072248)+1 种基金the Seismic Active Fault Exploration Project based on High-Resolution Remote Sensing Interpretation Technology by the Department of Earthquake Damage Defense,CEA(15230003)the Basic Science Research Plan of Institute of Earthquake Forecasting,CEA(2019IEF0201).
文摘The quantitative calculation of the volume of large earthquake-triggered landslides and related dammed lake sediments is of great significance in the study of secondary disasters and focal parameters of strong historical earthquakes.In this study,the dammed lake induced by Qishan M7 earthquake(Lingtai County,Gansu Province,Northwest China)is selected as the research object.Based on the information collected from the 4 boreholes in the dammed lake area,we further take advantage of the lowlevel Unmanned Aerial Vehicle(UAV)photogrammetry and the morphology recovery method,to calculate the volume of the dammed lake and landslides,respectively.Finally,major conclusions are obtained as follows:①the AMS-14C age at the bottom of the Qiuzigou Dammed Lake sediments is 2890±30 BP,which coincides with the 780 BC Qishan earthquake;furthermore,the Qiuzigou Landslides seem to have been triggered by the earthquake,forming an enclosed dammed lake deposition environment after the upstream sediments accumulate;②the Qiuzigou landslides are opposite-sliding landslides that have blocked the river valley;in detail,landslide volumes at the right and left banks are 235×104 m3 and 229×104 m3,respectively.The length of the dammed lake is 2.6 km,with a thickness of approximately 43 m near the landslides,and the total sedimentary volume is 573×104 m3;③the erosion rate of Qiuzigou Landslide Dammed Lake is 0.44 mm/a,the accumulation rate is 15.05 mm/a,and the soil erosion modulus is 593 t/(km2/a),characterized as slight erosion.Quantitative research on the formation of landslides and dammed lakes from strong historical earthquakes is vital for increasing our understanding of the vibrational characteristics and surface action processes of these types of earthquakes.
文摘After the Wenchuan Earthquake, many large-scale debris flows blocked rivers, generated dammed lakes, and produced outburst flood at the seriously hit areas. This paper mainly discussed the formation, outburst, impacts and risks of debris flow dammed lakes. The field investigation showed that the dammed lakes were created by debris flows from gullies and hill-slopes as well as the combination of debris flow and landslides, and also distributed along rivers step-by-step. The height of dams and the length of dammed lakes along river channel varied from 4 m to 18 m and from 400 m to 5000 m, respectively, and the reservoir capacity of dammed lakes were from 1.5 × 105 m3 to 3 × 106 m3. Due to geomorphological impact, dammed lakes commonly partially outburst along their front of debris flow deposition dams (1/4 - /3 outburst) or the suture between debris flow and landslide, and hardly completely outburst. Moreover, the subsequent debris flows continuously increased the magnitude and height of dams, not only increasing the stability of a single dam, but also improving the risks of outburst flood induced by intensive rainstorm. Dammed lakes produced steep rage in the sites of dams with the 4% - 9% of slope and rapidly raised river channel in the upstream due to a mass of alluvial sediment. As a result, the landscapes of step-dams and step-lakes dominate driver channels, significantly increasing the hazards of floods. Then the hazards, impacts and risk of debris flow dammed lakes along Min River from Dujiangyan to Wenchuan were analyzed. In order to mitigate dammed lakes induced by debris flows, the identification model of debris flow blocking rivers, the process of the formation, outburst and evolvement of dammed lakes, and the model of risk assessment for step-dammed lakes were strongly suggested to explore, and be used at the rivers of Min, Yuzi, Caopo, Longxi, Mianyuan, Jian, Shiting, Baishui and Jushui.
基金funded by the National Natural Science Foundation of China(No.41977226)the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(No.SKLGP2016Z015)。
文摘In an earlier study of the Diexi ancient dammed lake along the Minjiang River in Southwest China,10 disturbed layers with envelope and flame structures were found in more than 240 m of lacustrine sediments.In this paper,the soft-sediment disturbances caused by earthquakes in the Diexi ancient dammed lake were studied based on field investigations and laboratory core observations.A two-to three-degree-of-freedom spring-type earthquake simulation vibration table was used to carry out disturbance tests on lacustrine sediments under different dynamic conditions.The results support the following conclusions:(1)The disturbance layers in the lacustrine sediments were caused by strong earthquakes in the region.(2)The characteristics of the disturbance layers are related to the seismic parameters and the degree of sediment consolidation.(3)The greater the earthquake intensity is,the greater the disturbance amplitude is;moreover,the lower the consolidation degree is,the greater the disturbance amplitude.(4)The simulation tests verify that the disturbance layers in the sediments of the Diexi ancient dammed lake correspond to strong earthquakes in the region.These results are valuable for ongoing palaeoseismic research in the region.
基金funded by the National Natural Science Foundation of China(No.41977226)the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(No.SKLGP2016Z015)。
文摘The Diexi ancient dammed lake is in the upper reaches of the Minjiang River.Six terraces with lacustrine sediments occur at the base.These terraces are the products of the graded outburst of the Diexi ancient dammed lake.The outburst of the ancient dammed lake would certainly have had an impact on the Chengdu Plain in the lower reaches of the Minjiang River.In this paper,on-site sampling and laboratory analysis were used to analyze the sediments of the Diexi ancient dammed lake and the Jinsha site in Chengdu Plain,and the environmental indicators of each sediment layer were tested.Through a comparative analysis of the environmental indicators in the sediments at the two locations,the following results were obtained:the palaeoclimatic and palaeoenvironmental characteristics at the two locations generally show consistent changes.The most important finding is that the types and content of the major pollen taxa at the two locations are similar.The Pinus content strongly proves that the soil layers at the Jinsha site was sourced from the upper reaches of the Minjiang River.Considering that the demise of the ancient culture at the Jinsha site occurred close in time to the outburst of the ancient dammed lake,this similarity suggests that the cultural change at the Jinsha site may have been related to the outburst of the Diexi ancient dammed lake.
基金funded by the National Key Technology Research and Development Programthe Key Basic Research Program of the Ministry of Science and Technology of China (2012BAC19B07, 2013FY111400)the National Natural Science Foundation of China (41190084)
文摘Glacial outburst floods(GLOFs) in alpine regions tend to be relatively complicated, multi-stage catastrophes, capable of causing significant geomorphologic changes in channel surroundings and posing severe threats to infrastructure and the safety and livelihoods of human communities. GLOF disasters have been observed and potential hazards can be foreseen due to the newly formed glacial lakes or the expansion of existing ones in the Poiqu River Basin in Tibet, China. Here we presented a synthesis of GLOF-related studies including triggering mechanism(s), dam breach modeling, and flood routing simulation that have been employed to reconstruct or forecast GLOF hydrographs. We provided a framework for probability-based GLOFs simulation and hazard mapping in the Poiqu River Basin according to available knowledge. We also discussed the uncertainties and challenges in the model chains, which may form the basis for further research.
基金supported by the Ministry of Education of the Republic of Koreathe National Research Foundation of Korea (grant NRF-2018S1A5A2A01031348 awarded to Y.B. Seong)
文摘The formation and evolution of glacier moraine-dammed lakes are closely related to past glacier expansion and retreat. Geomorphic markers such as lacustrine terraces and beach ridges observed in these lakes provide important evidence for regional paleoenvironment reconstruction. We document the magnitude of paleo-shoreline fluctuations and timings of highstands of lake water by using cosmogenic 10Be surface exposure dating and optically stimulated luminescence(OSL) dating on samples collected from lacustrine sediment and bedrock strath in Lake Khagiin Khar. The lake was initially impounded by glacier moraine at the Global Last Glacial maximum(gLGM;21–19 ka), and the lake reached its maximum paleo-shoreline level of 1840 m at sea level(a.s.l.). At that time, the stored lake water amount was up to seven times greater and the surface area was three times larger than the present values. The paleolake experienced higher shoreline levels at 1832, 1822, and 1817 m a.s.l. and reached the present lake level after 0.4 ka. We interpret that decrease in the paleolake level was caused by spillover. The increase in melt water after the gLGM and the Late Glacial exceeded the storage threshold of the lake, and the paleolake water overflowed across the lowest drainage divides. The lake spilled over across the lowest bedrock ridge at 15.9 ± 0.6 ka, and the outlet was incised since that time at a rate of 3.72 ± 0.15 mm/yr. The initial stream of the Khiidiin Pass River was disturbed by LGM moraine damming and was rerouted into the present course running through moraine after the spillover at 15.9 ± 0.6 ka.
基金supported by programs from the Ministry of Science and Technology of China (MOST) (Grant Nos. 2013FY111400 and 2012BAC19B07)the National Natural Science Foundation of China (Grant No. 41190084)The first and second Chinese Glacier Inventory data were provided by an immediate past Project from MOST (Grant No. 2006FY110200)
文摘Glacier retreat is not only a symbol of temperature and precipitation change, but a dominating factor of glacial lake changes in alpine regions, which are of wide concern for high risk of potential outburst floods. Of all types of glacial lakes, moraine-dammed lakes may be the most dangerous to local residents in mountain regions. Thus, we monitored the dy- namics of 12 moraine-dammed glacial lakes from 1974 to 2014 in the Poiqu River Basin of central west Himalayas, as well as their associated glaciers with a combination of remote sensing, topographic maps and digital elevation models (DEMs). Our results indicate that all monitored moraine-dammed glacial lakes have expanded by 7.46 km2 in total while the glaciers retreated by a total of 15.29 km2 correspondingly. Meteorological analysis indicates a warming and drying trend in the Nyalam region from 1974 to 2014, which accelerated glacier retreat and then augmented the supply of moraine-dammed glacial lakes from glacier melt. Lake volume and water depth changed from 1974 to 2014 which indicates that lakes Kangxico, Galongco, and Youmojanco have a high potential for outburst floods and in urgent need for continuous moni- toring or artificial excavation to release water due to the quick increase in water depths and storage capacities. Lakes Jialongco and Cirenmaco, with outburst floods in 1981 and 2002, have a high potential risk for outburst floods because of rapid lake growth and steep slope gradients surrounding them.
基金supported by the National Basic Research Program of China(973 Program,Grant No.2012CB417000)
文摘Full operation of the Three Gorges Dam(TGD) reduces flood risk of the middle and lower parts of the Yangtze River Basin. However,Dongting Lake, which is located in the Yangtze River Basin, is still at high risk for potentially severe flooding in the future. The effects of the TGD on flood processes were investigated using a hydrodynamic model. The 1998 and 2010 flood events before and after the operation of the TGD, respectively, were analyzed. The numerical results show that the operation of the TGD changes flood processes, including the timing and magnitude of flood peaks in Dongting Lake. The TGD can effectively reduce the flood level in Dongting Lake, which is mainly caused by the flood water from the upper reach of the Yangtze River. This is not the case, however, for floods mainly induced by flood water from four main rivers in the catchment. In view of this, a comprehensive strategy for flood management in Dongting Lake is required. Non-engineering measures, such as warning systems and combined operation of the TGD and other reservoirs in the catchment, as well as traditional engineering measures, should be further improved. Meanwhile, a sustainable philosophy for flood control, including natural flood management and lake restoration, is recommended to reduce the flood risk.
文摘The Confluent and Niandouba dams were built in 1984 and 1997 respectively to better control water resources, increase agricultural production and promote local development. This article studies their evolution on the Kayanga/Geba River, a transboundary river between Guinea, Senegal and Guinea-Bissau, from its impoundment to the present day. The topographic characteristics analysed through the DTMs (Digital Terrain Models) show a flat shape for the Confluent Dam Lake and long plateaus for the Niandouba Dam Lake. The cross-sections present a variety of morphologies ranging from wide U-shaped valleys with sinuous bottoms to deep V-shaped valleys. The homogenisation and reconstruction of missing values were carried out using the regional vector me<span>thod. The application of Pettitt’s statistical test on annual rainfall (1932-2019) indicates breaks of stationarity in 1967 or 1969. The post-breakage deficits range from 11.4% to 19.4%. The segmentation method corroborates the results of the Pettitt test. The variations of the surface area of the Confluent and Niandouba water bodies are linked to rainfall, evaporation and withdrawals for different uses. Their monitoring would allow for better management of ava</span>ilable water resources but also for good planning of off-season crops.
基金National Key R&D Program of China(2018YFC0407201).
文摘The regulation and storage capacity of Poyang Lake is infl uenced by the fl ow from the main stream of the Yangtze River and the fi ve rivers in the Poyang Lake basin.After the operation of the Three Gorges Dam(TGD),hydrological changes in the main stream of the Yangtze River impact water exchange between the Yangtze River and Poyang Lake.Based on the analysis of measured data and factors infl uencing outfl ow at Hukou station,a new empirical formula describing outfl ow at Hukou station and critical water level for lake storage capacity is established.The change in monthly storage capacity of Poyang Lake before and after the construction of the TGD is analyzed quantitatively.The results show that the fl ows from the main stream of the Yangtze River and the fi ve rivers in the Poyang Lake basin affect outfl ow and water storage capacity by changing the water level difference between Xingzi and Hukou stations and by changing the water level at Hukou station.But the Yangtze River and the fi ve rivers in the Poyang Lake basin differ in process and degree.If the water level at Hukou station remains consistent,when the fl ow from the fi ver rivers increases by 1,000 m3/s,the outfl ow at Hukou station increases by 304 m3/s.When the fl ow from the main stream of the Yangtze River increases by 1,000 m3/s,the outfl ow at Hukou station decreases by 724 m3/s.In addition,the operation of the TGD affects the water storage capacity of Poyang Lake.The water volume of Poyang Lake decreases by 49.4%in September,but increases by 47.7%in May.
基金supported by Project No.1212011120185 sponsored by China Geological Survey
文摘Many moraines formed between Daduka and Chibai in the Tsangpo River valley since Middle Pleistocene. A prominent set of lacustrine and alluvial terraces on the valley margin along both the Tsangpo and Nyang Rivers formed during Quaternary glacial epoch demonstrate lakes were created by damming of the river. Research was conducted on the geological environment, contained sediments, spatial distribution, timing, and formation and destruction of these paleolakes. The lacustrine sediments 14C (10537±268 aBP at Linzhi Brick and Tile Factory, 22510±580 aBP and 13925±204 aBP at Bengga, 21096±1466 aBP at Yusong) and a series of ESR (electron spin resonance) ages at Linzhi town and previous data by other experts, paleolakes persisted for 691±305 kaBP middle Pleistocene ice age, 75-40 kaBP the early stage of last glacier, 27-8 kaBP Last Glacier Maximum (LGM), existence time of lakes gradually shorten represents glacial scale and dam moraine supply potential gradually cut down, paleolakes and dam scale also gradually diminished. This article calculated the average lacustrine sedimentary rate of Gega paleolake in LGM was 12.5 mm/a, demonstrates Mount Namjagbarwa uplifted strongly at the same time, the sedimentary rate of Gega paleolake is more larger than that of enclosed lakes of plateau inland shows the climatic variation of Mount Namjagbarwa is more larger and plateau margin uplifted more quicker than plateau inland. This article analyzed formation and decay cause about the Zelunglung glacier on the west flank of Mount Namjagbarwa got into the Tsangpo River valley and blocked it for tectonic and climatic factors. There is a site of blocking the valley from Gega to Chibai. This article according to moraines and lacustrine sediments yielded paleolakes scale: the lowest lake base altitude 2850 m, the highest lake surface altitude 3585 m, 3240 m and 3180 m, area 2885 km2, 820 km2 and 810 km2, lake maximum depth of 735 m, 390 m and 330 m. We disclose the reason that previous experts discovered there were different age moraines dividing line of altitude 3180 m at the entrance of the Tsangpo Grand Canyon is dammed lake erosive decay under altitude 3180 m moraines in the last glacier era covering moraines in the early ice age of late Pleistocene, top 3180 m in the last glacier moraine remained because ancient dammed lakes didn't erode it under 3180 m moraines in the early ice age of late Pleistocene exposed. The reason of the top elevation 3585 m moraines in the middle Pleistocene ice age likes that of altitude 3180 m. There were three times dammed lakes by glacier blocking the Tsangpo River during Quaternary glacial period. During other glacial and interglacial period the Zelunglung glacier often extended the valley but moraine supplemental speed of the dam was smaller than that of fluvial erosion and moraine movement, dam quickly disappeared and didn't form stable lake.
基金supported by the Natural Science Research Project of the Colleges and Universities in Anhui Province(KJ2020ZD34)the National Natural Science Foundation of China(41807267 and 42077259).
文摘On August 10,2019,due to the effect of a rainstorm caused by Super Typhoon Lekima,a landslide occurred in Shanzao Village,China.It blocked the Shanzao stream,forming a barrier lake,and then the barrier lake burst.This is a rare natural disaster chain of typhoon-rainstorm-landslide-barrier lake-flooding.This study was built on field surveys,satellite image interpretation,the digital elevation model(DEM),engineering geological analysis and empirical regression.The purpose was to reveal the characteristics and causes of the landslide,the features and formation process of the barrier lake and the dam break flooding discharge.The results show that the volume of the landslide deposit is approximately 2.4×105 m3.The burst mode of the landslide dam is overtopping,which took only 22 minutes from the formation of the landslide dam to its overtopping.The dam-break peak flow was 1353 m3/s,and the average velocity was 2.8–3.0 m/s.This study shows that the strongly weathered rock and soil slope has low strength and high permeability under the condition of heavy rainfall,which reminds us the high risk of landslides and the importance of accurate early warning of landslides under heavy rainfalls in densely populated areas of Southeast China,as well as the severity of the disaster chain of typhoon-rainstorm-landslide-barrier lake-flooding.
文摘Hazards in reservoirs and lakes arising from subaerial landslides causing impact waves(or ‘lake tsunamis’) are now well known, with several recent examples having been investigated in detail. The potential scale of such hazards was not widely known at the time of the Vaiont dam project in the 1950s and early 1960s, although a small wave triggered by a landslide at another new reservoir nearby in the Dolomites(northern Italy) drew the possible hazard to the attention of the Vaiont project’s managers. The Vaiont disaster in 1963 arose from a combination of disparate and seemingly unrelated factors and circumstances that led to an occurrence that could not have been imagined at that time. The ultimate cause was a very large landslide moving very rapidly into a reservoir and displacing the water. The resulting wave overtopped the dam to a height of around 175 m and around 2000 people were killed. This paper identifies and examines all of the issues surrounding the Vaiont dam and landslide in order to identify causal factors, contributory factors(including aggravating factors) and underlying factors. In doing so, it demonstrates that the disaster arose from the Vaiont dam project and cannot be attributed simply to the landslide. Underlying geological factors gave rise to the high speed of the landslide, which would have occurred anyway at some time. However, without the contributory factors that account for the presence of the reservoir, i.e. the choice of location for the project and management of the project with respect to a possible landslide hazard, there would have been no disaster. Indeed, the disaster could have been avoided if the reservoir could have been emptied pending further ground investigations. Understanding of this case provides many lessons for future dam projects in mountainous locations but also highlights an ongoing and perhaps under-appreciated risk from similar events involving other water bodies including geologically recent lakes formed behind natural landslide dams.
文摘1 Introduction Lake Urmia in the northwestern corner of Iran is one of the largest permanent hypersaline lakes in the world and the largest lake in the Middle East(1,2,3).The lake was
文摘In the current scenario,Lake Urmia,one of the vastest hyper saline lakes on the Earth,has been affected by serious environmental degradation.Using different satellite images and observational data,this study investigated the changes in the lake for the period 1970–2020 based on the effects of climate change and several human-induced processes on Lake Urmia,such as population growth,excessive dam construction,low irrigation water use efficiency,poor water resources management,increased sediment flow into the lake,and lack of political and legal frameworks.The results indicated that between 1970 and 1997,the process of change in Lake Urmia was slow;however;the shrinkage was faster between 1998 and 2018,with about 30.00%of the lake area disappearing.As per the findings,anthropogenic factors had a much greater impact on Lake Urmia than climate change and prolonged drought;the mismanagement of water consumption in the agricultural sector and surface and underground water withdrawals in the basin have resulted in a sharp decrease in the lake's surface.These challenges have serious implications for water resources management in Lake Urmia Basin.Therefore,we provided a comprehensive overview of anthropogenic factors on the changes in Lake Urmia along with existing opportunities for better water resources management in Lake Urmia Basin.This study serves as a guideline framework for climate scientists and hydrologists in order to assess the effects of different factors on lake water resources and for decision-makers to formulate strategies and plans according to the management task.
文摘This paper gives a brief introduction to the emergency handling of Tangjiashan barrier lake.Some technologies for the application of geological and topographical data are summarized and the mechanism of formation of a barrier lake is analyzed.Based on the safety status evaluation,the dam breach flood point is calculated.The paper concludes with discussion of the practical effects of emergency handling scenarios and different drainage channel designs.