Due to the complexity of earthwork allocation system for the construction of high concrete face rockfill dam,traditional allocation and planning are not able to function properly in the construction process with stron...Due to the complexity of earthwork allocation system for the construction of high concrete face rockfill dam,traditional allocation and planning are not able to function properly in the construction process with strong randomness.In this paper,the working mechanism of earthwork dynamic allocation system is analyzed comprehensively and a solution to fuzzy earthwork dynamic allocation is proposed on the basis of uncertain factors in the earthwork allocation of a hydropower project.Under the premise of actual situation and the experience of the construction site,an all-coefficient-fuzzy linear programming mathematical model with fuzzy parameters and constraints for earthwork allocation is established according to the structure unit weighted ranking criteria.In this way,the deficiency of certain allocation model can be overcome.The application results indicate that the proposed method is more rational compared with traditional earthwork allocation.展开更多
For solving the optimization model of earthwork allocation considering non-linear factors,a hybrid algorithm combined with the ant algorithm(AA)and particle swarm optimization(PSO)is proposed in this paper.Then the pr...For solving the optimization model of earthwork allocation considering non-linear factors,a hybrid algorithm combined with the ant algorithm(AA)and particle swarm optimization(PSO)is proposed in this paper.Then the proposed method and the LP method are used respectively in solving a linear allocation model of a high rockfill dam project.Results obtained by these two methods are compared each other.It can be concluded that the solution got by the proposed method is extremely approximate to the analytic solution of LP method.The superiority of the proposed method over the LP method in solving a non-linear allocation model is illustrated by a non-linear case.Moreover,further researches on improvement of the algorithm and the allocation model are addressed.展开更多
Roadway design usually involves choices regarding grade selection and earthwork (transportation) that can be solved using linear programming. Previous work considered the road profile as series of interconnected linea...Roadway design usually involves choices regarding grade selection and earthwork (transportation) that can be solved using linear programming. Previous work considered the road profile as series of interconnected linear segments. In these models, constraints are included in the linear programming formulation to insure continuity of the road, which cause sharp connectivity points at the intersection of the linear segments. This sharp connectivity needs to be smoothed out after l;he linear programming solution is found and the earth in the smoothed portion of the roadway has to be moved to the landfill. In previous research, the smoothing issue is dealt with after an optimal solution is found. This increases the work required by the design engineer and consequently increases the construction cost; furthermore, the optimal solution is violated by this smoothing operation. In this paper, the issue of sharp connectivity points is resolved by representing the road profile by a quadratic function. The continuity constraints are dropped (unneeded) and global optimality is guaranteed. Moreover, no violation is incurred to implement the optimum results. Although a quadratic function is used to represent the road profile, the mathematical model is purely linear in nature.展开更多
基金Supported by the Science Fund for Creative Research Groups of National Natural Science Foundation of China(No.51021004)Tianjin Research Program of Application Foundation and Advanced Technology(No.12JCZDJC29200)National Key Technology R and D Program in the 12th Five-Year Plan of China(No.2011BAB10B06)
文摘Due to the complexity of earthwork allocation system for the construction of high concrete face rockfill dam,traditional allocation and planning are not able to function properly in the construction process with strong randomness.In this paper,the working mechanism of earthwork dynamic allocation system is analyzed comprehensively and a solution to fuzzy earthwork dynamic allocation is proposed on the basis of uncertain factors in the earthwork allocation of a hydropower project.Under the premise of actual situation and the experience of the construction site,an all-coefficient-fuzzy linear programming mathematical model with fuzzy parameters and constraints for earthwork allocation is established according to the structure unit weighted ranking criteria.In this way,the deficiency of certain allocation model can be overcome.The application results indicate that the proposed method is more rational compared with traditional earthwork allocation.
文摘For solving the optimization model of earthwork allocation considering non-linear factors,a hybrid algorithm combined with the ant algorithm(AA)and particle swarm optimization(PSO)is proposed in this paper.Then the proposed method and the LP method are used respectively in solving a linear allocation model of a high rockfill dam project.Results obtained by these two methods are compared each other.It can be concluded that the solution got by the proposed method is extremely approximate to the analytic solution of LP method.The superiority of the proposed method over the LP method in solving a non-linear allocation model is illustrated by a non-linear case.Moreover,further researches on improvement of the algorithm and the allocation model are addressed.
文摘Roadway design usually involves choices regarding grade selection and earthwork (transportation) that can be solved using linear programming. Previous work considered the road profile as series of interconnected linear segments. In these models, constraints are included in the linear programming formulation to insure continuity of the road, which cause sharp connectivity points at the intersection of the linear segments. This sharp connectivity needs to be smoothed out after l;he linear programming solution is found and the earth in the smoothed portion of the roadway has to be moved to the landfill. In previous research, the smoothing issue is dealt with after an optimal solution is found. This increases the work required by the design engineer and consequently increases the construction cost; furthermore, the optimal solution is violated by this smoothing operation. In this paper, the issue of sharp connectivity points is resolved by representing the road profile by a quadratic function. The continuity constraints are dropped (unneeded) and global optimality is guaranteed. Moreover, no violation is incurred to implement the optimum results. Although a quadratic function is used to represent the road profile, the mathematical model is purely linear in nature.