Using NCEP/NCAR reanalysis geopotential height (GHT) and wind at 850 hPa, GHT at 500 hPa, precipitation rate, sea level pressure (SLP) and precipitation observations from more than 600 stations nationwide in June-...Using NCEP/NCAR reanalysis geopotential height (GHT) and wind at 850 hPa, GHT at 500 hPa, precipitation rate, sea level pressure (SLP) and precipitation observations from more than 600 stations nationwide in June-August from 1951 to 2006, and focusing on the East Asia-West Pacific region (10°-80°N, 70°-180°E), interannual variation of East Asian summer monsoon (EASM) and its correlations with general circulation and precipitation patterns are studied by using statistical diagnostic methods such as 9-point high pass filtering, empirical orthogonal function (EOF) analysis, composite analysis and other statistical diagnosis, etc. It is concluded as follows: (1) EOF analysis of SLP in the East Asia-West Pacific region shows the existence of the zonal dipole oscillation mode (APD) between the Mongolia depression and the West Pacific high, and APD index can be used as an intensity index of EASM. (2) EOF analysis of GHT anomalies at 500 hPa in the East Asia-West Pacific region shows that the first EOF mode is characterized with an obvious meridional East Asian pattern (EAP), and EAP index can also be used as an EASM intensity index. (3) The composite analysis of high/low APD index years reveals the close correlation of APD index with EAP at 500 hPa (or 850 hPa). The study shows an obvious opposite correlation exists between APD index and EAP index with a correlation coefficient of -0.23, which passes the confidence test at 0.10 level. (4) Both APD and EAP indexes are closely correlated with precipitation during flood-prone season in China and precipitation rate over the East Asia-West Pacific region. The significant correlation area at 5% confidence level is mainly located from the southern area of the Yangtze River valley to the ocean around southern Japan, and the former is a positive correlation and the latter is a negative one.展开更多
Representation of cloud microphysical processes is one of the key aspects of numerical models.An improved double-moment bulk cloud microphysics scheme(named IMY)was created based on the standard Milbrandt-Yau(MY)schem...Representation of cloud microphysical processes is one of the key aspects of numerical models.An improved double-moment bulk cloud microphysics scheme(named IMY)was created based on the standard Milbrandt-Yau(MY)scheme in the Weather Research and Forecasting(WRF)model for the East Asian monsoon region(EAMR).In the IMY scheme,the shape parameters of raindrops,snow particles,and cloud droplet size distributions are variables instead of fixed constants.Specifically,the shape parameters of raindrop and snow size distributions are diagnosed from their respective shape-slope relationships.The shape parameter for the cloud droplet size distribution depends on the total cloud droplet number concentration.In addition,a series of minor improvements involving detailed cloud processes have also been incorporated.The improved scheme was coupled into the WRF model and tested on two heavy rainfall cases over the EAMR.The IMY scheme is shown to reproduce the overall spatial distribution of rainfall and its temporal evolution,evidenced by comparing the modeled results with surface gauge observations.The simulations also successfully capture the cloud features by using satellite and ground-based radar observations as a reference.The IMY has yielded simulation results on the case studies that were comparable,and in ways superior to MY,indicating that the improved scheme shows promise.Although the simulations demonstrated a positive performance evaluation for the IMY scheme,continued experiments are required to further validate the scheme with different weather events.展开更多
Based on daily precipitation and monthly temperature data in southern China, the winter extreme precipitation changes in southern China have been investigated by using the Mann-Kendall test and the return values of Ge...Based on daily precipitation and monthly temperature data in southern China, the winter extreme precipitation changes in southern China have been investigated by using the Mann-Kendall test and the return values of Generalized Pareto Distribution. The results show that a winter climate catastrophe in southern China occurred around i99I, and the intensity of winter extreme precipitation was strengthened after climate wanning. The anomalous circulation characteristics before and after the climate wanning was further analyzed by using the U.S. National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis data. It is found that the tropical winter monsoon over East Asia is negatively correlated with the precipitation in southeastern China. After climate warming the meridionality of the circulations in middle and high latitudes increases, which is favorable for the southward movement of the cold air from the north. In addition, the increase of the temperature over southern China may lead to the decrease of the differential heating between the continent and the ocean. Consequently, the tropical winter monsoon over East Asia is weakened, which is favorable for the transport of the warm and humid air to southeastem China and the formation of the anomalous convergence of the moisture flux, resulting in large precipitation over southeastern China. As a result, the interaction between the anomalous circulations in the middle and high latitudes and lower latitudes after the climate warming plays a major role in the increase of the winter precipitation intensity over southeastem China.展开更多
The first two series(RMM1 and RMM2) of RMM Index(all-Season Real-time Multivariate MJO Index) are computed to obtain the interannual variation of the preceding winter(preceding December to current February) MJO streng...The first two series(RMM1 and RMM2) of RMM Index(all-Season Real-time Multivariate MJO Index) are computed to obtain the interannual variation of the preceding winter(preceding December to current February) MJO strength,according to which active(or inactive) years of preceding winter MJO are divided.By utilizing the data provided by NCEP/NCAR,CMAP and China's 160 stations from 1979 to 2008,we studied the preceding winter MJO strength and discovered that the summer precipitation in the basin are of significantly negative correlation,i.e.when the preceding winter MJO is relatively active,the summer precipitation in the basin decreases,and vise verse.We also analyzed the causes.When the preceding winter MJO is relatively active,its release of potential heat facilities Inter-Tropical Convergence Zone(ITCZ) to strengthen and locate northward in winter and propagate northeastward.This abnormal situation lasts from winter to summer.In mid-May,ITCZ jumps northward to the South China Sea,the western Pacific subtropical high withdraws eastward,and the South China Sea summer monsoon sets off and strengthens.In summer,ITCZ propagates to South China Sea-subtropical western Pacific,the zonal circulation of subtropical Pacific strengthens,and a local meridional circulation of the South China Sea to the basin area forms,giving rise to the East Asia Pacific teleconnection wave-train.An East Asian monsoon trough and the Meiyu front show opposite features from south to north,the East Asian summer monsoon strengthens and advances northward.As a result,the summer monsoon is weakened as the basin is controlled by the subtropical high continually,with less rain in summer.On the contrary,when the preceding winter MJO is inactive,ITCZ weakens and is located southward,the subtropical high is located southward in summer,and the basin is in a region of ascending airflow with prevailing southwest wind.The East Asian monsoon trough and EASM weaken so that summer monsoon is reduced in the basin where precipitation increases.展开更多
The authors examined the variability in wintertime cyclone activity and storm tracks and their relation to precipitation over China for the period 1951-2006 using the observational data.Two apparent modes of variabili...The authors examined the variability in wintertime cyclone activity and storm tracks and their relation to precipitation over China for the period 1951-2006 using the observational data.Two apparent modes of variability were assumed for the cyclone activity and storm tracks.The first mode describes the oscillation in the strength of the storm tracks in East Asia,which significantly increased since the mid-1980s,whereas the second mode describes a seesaw oscillation in the storm track strength between the Central-Southeast China and northem East Asia.The storm tracks over the Central-Southeast China have increased since the late 1960s.The possible causes for the variation of the cyclone activity and storm tracks are also explored.It is shown that wintertime precipitation,which has increased since the mid-1980s,concentrates in Central-Southeast China.The enhancement may be caused by the first mode of variability of storm tracks,whereas the interannual variability of precipitation may be linked to the second mode of the storm track variability.展开更多
Antarctic sea-ice oscillation index with a seesaw pattern is defined using NCEP/NCAR reanalysis girds data of monthly Antarctica sea-ice concentration from 1979 to 2002.The relationships between the index of winter an...Antarctic sea-ice oscillation index with a seesaw pattern is defined using NCEP/NCAR reanalysis girds data of monthly Antarctica sea-ice concentration from 1979 to 2002.The relationships between the index of winter and the summer precipitations in China as well as the onset date of the summer East Asia monsoon are presented.The study result shows that the grids of correlation coefficients passed 5% confidence level between Antarctic sea-ice oscillation index and Antarctic sea-ice concentration are more than 1/3 of all grids of Antarctica sea-ice,that means the index can represent 1/3 sea-ice area.The winter index has a significant correlation with abnormal summer(June-August) precipitation in China.The area of positive correlation lies in the Yangtze River basin and its south,and that of negative correlation lies mainly in the north of Yangtze River basin.While the winter index is positive(negative),the onset date of South China Sea monsoon is earlier(later),with a probability of 79%(80%).Consequently, a conceptual model is given in term of discussing the possible process between the winter Antarctic sea ice and the monsoon precipitation in China.展开更多
Previous studies have documented a weakening tendency of the East Asian summer monsoon (EASM) since the end of the 1970s. In this study, we report that the EASM has been recovering since the early 1990s, although its ...Previous studies have documented a weakening tendency of the East Asian summer monsoon (EASM) since the end of the 1970s. In this study, we report that the EASM has been recovering since the early 1990s, although its strength is still less than in previous decades (averaged over the period 1965-1980). Following the recovery of the EASM, there has been a tendency in the last decade toward northward-moving rainbands and excessive rainfall in the Huaihe River valley (110°-120°E, 30°-35°N). There is evidence suggesting that the strengthening EASM since the early 1990s is linked to interdecadal change of land-sea thermal contrast.展开更多
基金funded by the Ministry of Science and Technology of the People’s Republic of China,No.2007DFB20210National Natural Science Foundation of China,No.90502003JICA China-Japan Technical Cooperative Project "China-Japanese Cooperative Research Center on Meteorological Disasters"
文摘Using NCEP/NCAR reanalysis geopotential height (GHT) and wind at 850 hPa, GHT at 500 hPa, precipitation rate, sea level pressure (SLP) and precipitation observations from more than 600 stations nationwide in June-August from 1951 to 2006, and focusing on the East Asia-West Pacific region (10°-80°N, 70°-180°E), interannual variation of East Asian summer monsoon (EASM) and its correlations with general circulation and precipitation patterns are studied by using statistical diagnostic methods such as 9-point high pass filtering, empirical orthogonal function (EOF) analysis, composite analysis and other statistical diagnosis, etc. It is concluded as follows: (1) EOF analysis of SLP in the East Asia-West Pacific region shows the existence of the zonal dipole oscillation mode (APD) between the Mongolia depression and the West Pacific high, and APD index can be used as an intensity index of EASM. (2) EOF analysis of GHT anomalies at 500 hPa in the East Asia-West Pacific region shows that the first EOF mode is characterized with an obvious meridional East Asian pattern (EAP), and EAP index can also be used as an EASM intensity index. (3) The composite analysis of high/low APD index years reveals the close correlation of APD index with EAP at 500 hPa (or 850 hPa). The study shows an obvious opposite correlation exists between APD index and EAP index with a correlation coefficient of -0.23, which passes the confidence test at 0.10 level. (4) Both APD and EAP indexes are closely correlated with precipitation during flood-prone season in China and precipitation rate over the East Asia-West Pacific region. The significant correlation area at 5% confidence level is mainly located from the southern area of the Yangtze River valley to the ocean around southern Japan, and the former is a positive correlation and the latter is a negative one.
基金the National Natural Science Foundation of China(Grant No.42075083)National Key Research and Development Program of China(Grant No.2019YFC1510400)+1 种基金Guangdong Major Project of Basic and Applied Basic Research(Grant No.2020B0301030004)the Second Tibetan Plateau Scientific Expe-dition and Research(STEP)program(2019QZKK010402)。
文摘Representation of cloud microphysical processes is one of the key aspects of numerical models.An improved double-moment bulk cloud microphysics scheme(named IMY)was created based on the standard Milbrandt-Yau(MY)scheme in the Weather Research and Forecasting(WRF)model for the East Asian monsoon region(EAMR).In the IMY scheme,the shape parameters of raindrops,snow particles,and cloud droplet size distributions are variables instead of fixed constants.Specifically,the shape parameters of raindrop and snow size distributions are diagnosed from their respective shape-slope relationships.The shape parameter for the cloud droplet size distribution depends on the total cloud droplet number concentration.In addition,a series of minor improvements involving detailed cloud processes have also been incorporated.The improved scheme was coupled into the WRF model and tested on two heavy rainfall cases over the EAMR.The IMY scheme is shown to reproduce the overall spatial distribution of rainfall and its temporal evolution,evidenced by comparing the modeled results with surface gauge observations.The simulations also successfully capture the cloud features by using satellite and ground-based radar observations as a reference.The IMY has yielded simulation results on the case studies that were comparable,and in ways superior to MY,indicating that the improved scheme shows promise.Although the simulations demonstrated a positive performance evaluation for the IMY scheme,continued experiments are required to further validate the scheme with different weather events.
基金National Key Technology Support Program (2009BAC51B03)Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education (2007)
文摘Based on daily precipitation and monthly temperature data in southern China, the winter extreme precipitation changes in southern China have been investigated by using the Mann-Kendall test and the return values of Generalized Pareto Distribution. The results show that a winter climate catastrophe in southern China occurred around i99I, and the intensity of winter extreme precipitation was strengthened after climate wanning. The anomalous circulation characteristics before and after the climate wanning was further analyzed by using the U.S. National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis data. It is found that the tropical winter monsoon over East Asia is negatively correlated with the precipitation in southeastern China. After climate warming the meridionality of the circulations in middle and high latitudes increases, which is favorable for the southward movement of the cold air from the north. In addition, the increase of the temperature over southern China may lead to the decrease of the differential heating between the continent and the ocean. Consequently, the tropical winter monsoon over East Asia is weakened, which is favorable for the transport of the warm and humid air to southeastem China and the formation of the anomalous convergence of the moisture flux, resulting in large precipitation over southeastern China. As a result, the interaction between the anomalous circulations in the middle and high latitudes and lower latitudes after the climate warming plays a major role in the increase of the winter precipitation intensity over southeastem China.
基金Joint Project of Natural Science Foundation of China and Yunnan Province (U0833602)
文摘The first two series(RMM1 and RMM2) of RMM Index(all-Season Real-time Multivariate MJO Index) are computed to obtain the interannual variation of the preceding winter(preceding December to current February) MJO strength,according to which active(or inactive) years of preceding winter MJO are divided.By utilizing the data provided by NCEP/NCAR,CMAP and China's 160 stations from 1979 to 2008,we studied the preceding winter MJO strength and discovered that the summer precipitation in the basin are of significantly negative correlation,i.e.when the preceding winter MJO is relatively active,the summer precipitation in the basin decreases,and vise verse.We also analyzed the causes.When the preceding winter MJO is relatively active,its release of potential heat facilities Inter-Tropical Convergence Zone(ITCZ) to strengthen and locate northward in winter and propagate northeastward.This abnormal situation lasts from winter to summer.In mid-May,ITCZ jumps northward to the South China Sea,the western Pacific subtropical high withdraws eastward,and the South China Sea summer monsoon sets off and strengthens.In summer,ITCZ propagates to South China Sea-subtropical western Pacific,the zonal circulation of subtropical Pacific strengthens,and a local meridional circulation of the South China Sea to the basin area forms,giving rise to the East Asia Pacific teleconnection wave-train.An East Asian monsoon trough and the Meiyu front show opposite features from south to north,the East Asian summer monsoon strengthens and advances northward.As a result,the summer monsoon is weakened as the basin is controlled by the subtropical high continually,with less rain in summer.On the contrary,when the preceding winter MJO is inactive,ITCZ weakens and is located southward,the subtropical high is located southward in summer,and the basin is in a region of ascending airflow with prevailing southwest wind.The East Asian monsoon trough and EASM weaken so that summer monsoon is reduced in the basin where precipitation increases.
基金supported by the National Basic Research Program of China(Grant No.2010CB428606)the Chinese Natural Science Foundation Key Project(Grant No.41130962)the Nansen Scientific Society
文摘The authors examined the variability in wintertime cyclone activity and storm tracks and their relation to precipitation over China for the period 1951-2006 using the observational data.Two apparent modes of variability were assumed for the cyclone activity and storm tracks.The first mode describes the oscillation in the strength of the storm tracks in East Asia,which significantly increased since the mid-1980s,whereas the second mode describes a seesaw oscillation in the storm track strength between the Central-Southeast China and northem East Asia.The storm tracks over the Central-Southeast China have increased since the late 1960s.The possible causes for the variation of the cyclone activity and storm tracks are also explored.It is shown that wintertime precipitation,which has increased since the mid-1980s,concentrates in Central-Southeast China.The enhancement may be caused by the first mode of variability of storm tracks,whereas the interannual variability of precipitation may be linked to the second mode of the storm track variability.
基金funded by Ministry of Science and Technology of China(2006BAB18B05)National Natural Science Foundation of China(40905048)
文摘Antarctic sea-ice oscillation index with a seesaw pattern is defined using NCEP/NCAR reanalysis girds data of monthly Antarctica sea-ice concentration from 1979 to 2002.The relationships between the index of winter and the summer precipitations in China as well as the onset date of the summer East Asia monsoon are presented.The study result shows that the grids of correlation coefficients passed 5% confidence level between Antarctic sea-ice oscillation index and Antarctic sea-ice concentration are more than 1/3 of all grids of Antarctica sea-ice,that means the index can represent 1/3 sea-ice area.The winter index has a significant correlation with abnormal summer(June-August) precipitation in China.The area of positive correlation lies in the Yangtze River basin and its south,and that of negative correlation lies mainly in the north of Yangtze River basin.While the winter index is positive(negative),the onset date of South China Sea monsoon is earlier(later),with a probability of 79%(80%).Consequently, a conceptual model is given in term of discussing the possible process between the winter Antarctic sea ice and the monsoon precipitation in China.
基金supported by the National Natural Science Foundation of China (40890054, 40805026 and 40975058)the National Basic Research Program of China (2011CB403406)+1 种基金the Development Program of Science and Technology in the Shanxi Science and Technology Department(20100311131)the Foundation of CUIT (KYTZ201012)
文摘Previous studies have documented a weakening tendency of the East Asian summer monsoon (EASM) since the end of the 1970s. In this study, we report that the EASM has been recovering since the early 1990s, although its strength is still less than in previous decades (averaged over the period 1965-1980). Following the recovery of the EASM, there has been a tendency in the last decade toward northward-moving rainbands and excessive rainfall in the Huaihe River valley (110°-120°E, 30°-35°N). There is evidence suggesting that the strengthening EASM since the early 1990s is linked to interdecadal change of land-sea thermal contrast.