The Qaidam Basin(QB)is a concentrated distribution area and chemical industrial bases of salt lakes in China.Lakes in the QB have been expanding during the past 20 years.Rapid lake expansion resulted in some considera...The Qaidam Basin(QB)is a concentrated distribution area and chemical industrial bases of salt lakes in China.Lakes in the QB have been expanding during the past 20 years.Rapid lake expansion resulted in some considerable scientific issues on the protection of salt lake resources and infrastructure,and monitoring of hydrological processes at the lake-basin scale.Although the spatial-temporal trends of lake changes on the Qinghai-Tibet Plateau(QTP)have been well documented,the underlying influencing mechanism and hydrogeological implications of rapid lake changes in the QB are not well understood.Three lakes in the northern QB were selected to investigate lake water level fluctuations on different time scales based on extensive in-situ monitoring and satellite observations.The influencing mechanism and hydrogeological implications of rapid changes of terminal lakes were discussed in combination with the reported increasing precipitation rate and mass balance of glaciers in the northern QTP.Results reveal the following:(1)the fluctuation pattern of Sugan Lake was asynchronous and out of phase with that of Xiao Qaidam and Toson lakes during the monitoring period;(2)Sugan Lake water rose gradually,and the rise interval was from late April to early July.In contrast,Xiao Qaidam and Toson lakes took on a rapid and steep rise,and the rise intervalwas from late July to September;(3)the influencing mechanisms for rapid lake fluctuations are controlled by different factors:glacier and snow melting with increasing temperature for Sugan Lake and increasing precipitation for Xiao Qaidam and Toson lakes;(4)in accordance with different intervals and influencing mechanisms of rapid lake expansions in the QB,hydrological risk precaution of lakes and corresponding river catchments was conducted in different parts of the basin.This study provided an important scientific basis for assessing the hydrological process and hydrological risk precaution,and protection of salt lake resources along with rapid lake expansions in the arid area.展开更多
The Late Cretaceous tectonic upheaval was an important event during the evolution of the Qaidam Basin, resulting in the omission of the Upper Cretaceous in the whole basin and unconformities between the Paleogene sequ...The Late Cretaceous tectonic upheaval was an important event during the evolution of the Qaidam Basin, resulting in the omission of the Upper Cretaceous in the whole basin and unconformities between the Paleogene sequence and pre-K2 strata. Inte-grating geological and geophysical data, two different groups of Late Cretaceous faults were recognized in the study area, one group consisting of E-W extending strike-slip faults (e.g., the Maxian and Yema-Jinan faults in the Mahai area, which caused an E-W omission zone of Mesozoic), while the other one has NW-SE thrust faults, resulting in NW-SE fold-and-thrust belts. Considering the different strikes and scale of these two groups, a simple-shear model has been employed to explain this structural phenomenon. The NW-SE thrust faults were thought to be subsidiary to the E-W strike-slip faults. Putting this into the framework of the Cretaceous paleogeographic environment of central Asia, it is inferred that this tectonic event of the Qaidam Basin is a response to the continuous northward drifting of the India plate.展开更多
The Northern Qaidam Basin is located at the northeastern part of the Qinghai-Tibetan Plateau. It contains very thick Cenozoic terrestrial clastic sediments, which records the formation of the northern Qaidam Basin due...The Northern Qaidam Basin is located at the northeastern part of the Qinghai-Tibetan Plateau. It contains very thick Cenozoic terrestrial clastic sediments, which records the formation of the northern Qaidam Basin due to compressional deformation during the Indo-Asian collision. In this paper, we used detrital apatite fission-track thermochronology, including 4 sandstones and 2 conglomerates samples from the Lulehe section, to reveal the Cenozoic evolution of the northern Qaidam Basin. Fission-track dating indicated the source region of the Lulehe section has experiencedimportant cooling and uplifting in the Late Cretaceous(at ~85.1 Ma and ~65 Ma) and the Eocene(~52 Ma), respectively. The AFT age distribution on the section suggested that the provenance of Lulehe section sediments were mainly derived from the south Qilian Shan(Qilian Mountains) and Altun Shan(Altun Mountains), and two significantly provenance changes may occur at 43.4-46.1 Ma and ~37.8 Ma, respectively. The results may have strong constrains on the Cenozoic deformation and tectonic evolution of the northern Qaidam Basin and Qinghai-Tibet Plateau.展开更多
We investigate the growth of the northern Tibetan Plateau and associated climate change by applying oxygen and carbon isotopic compositions in Cenozoic strata in the southwestern Qaidam basin. The X-ray diffraction an...We investigate the growth of the northern Tibetan Plateau and associated climate change by applying oxygen and carbon isotopic compositions in Cenozoic strata in the southwestern Qaidam basin. The X-ray diffraction and isotopic studies reveal that the carbonate minerals are mainly authigenic and they do not preserve any evidence for detrital carbonate and diagenesis. The isotope data show large fluctuations in the δ^(18)O and δ^(13)C values in the middle-late Eocene, indicating relatively warm and seasonal dry climate.The positive correlation of the δ^(18)O and δ^(13)C values in the Oligocene and the positive shift of the δ^(13)C values from the Eocene to Oligocene suggest that the climate changed to arid in the Oligocene. However,the δ^(18) values show negative shift, which is closely related to the global cooling event. During the Miocene, the δ^(13)C values vary between-2‰ and-4‰, whereas the δ^(18)O values show continuous negative shift. The mean δ^(18) values decrease from-8.5‰, in the early Miocene to-10.0‰, in the late Miocene. The stable isotope-based paleoaltimetry results suggest that the elevation of the southwestern Qaidam basin was approximately 1500 m in the middle-late Eocene and Oligocene. Subsequently, during Miocene the crustal uplift process started and the elevation reached approximately 2000 m in the early Miocene and 2500 m in the late Miocene, which suggests large-scale growth of the northern Tibet Plateau during the Miocene.展开更多
Eclogites have been recently discovered in the Xitieshan area in the middlesegment of the northern margin of the Qaidam basin. These eclogites, together with those recognizedearlier in the Yuka area of the western seg...Eclogites have been recently discovered in the Xitieshan area in the middlesegment of the northern margin of the Qaidam basin. These eclogites, together with those recognizedearlier in the Yuka area of the western segment of the northern margin of the Qaidam basin and inthe Dulan area of the eastern segment of the northern margin of the Qaidam basin, form an eclogitebelt with a length of 350 km. A comparison of the eclogites from the Yuka and Xitieshan areassuggests that they show different country rocks, microtextures, mineral assemblages, and especially,different peak temperatures, PT paths during decompression and isotopic features. Eclogites fromthe Yuka area bear evidence of prograde metamorphism, such as prograde mineral relics in garnet andgrowth zoning of garnet, and hairpin-shaped PT paths with coincidence of the baric and thermal peaksof metamorphism, which reflect rapid burial and uplift. Sm-Nd isotopic determination shows obviousSm-Nd disequilibrium, and no isochron ages of Early Paleozoic metamorphism was obtained. On thecontrary, the Xitieshan eclogite was subjected to metamorphism of higher eclogite-facies andpost-eclogite-facies temperatures, showing an obvious granulite-facies overprint. A tentative PTpath for the Xitieshan area suggests that the baric peak preceded the thermal culmination. Wholerock-garnet-omphacite Sm-Nd isotopic data give an isochron age in the Early Paleozoic. Thedifferences between the two eclogites imply their different tectonic-thermal history during theirburial and uplift.展开更多
The distribution of the Jurassic coal measures in the northern Qaidam Basin is obviously controlled by the regional structures. Based on the existing data of coalfield exploration and combined with the analysis of coa...The distribution of the Jurassic coal measures in the northern Qaidam Basin is obviously controlled by the regional structures. Based on the existing data of coalfield exploration and combined with the analysis of coalfield basement structures, features of the main faults, and the distribution of coal measures, this paper brings forward a scheme of coalfield tectonic divisional units and the definition of the coal-controlling structural styles in the northern Qaidam Basin. The structure control of the distribution of coal measures is further discussed. Several stages of regional tectonic activities since the Indosinian has led to the distribution of coal measures into the characteristics of zonation from the north to south and block from east to west. The results indicate that the structural deformations are the most intense in the front of the three uplifted belts, which are characterized by the combination of thrusts. The coal measures are uplifted to the shallow formations, and are easy to be exploited, but the scale of mines is small because of serious damages by the coal distribution. On the contrary, the stress and strain are weak in the three depressions, with the coal-controlling structural styles being mainly the thrust-fold and thrust-monocline combinations. The distribution of coals in the depressions is relatively stable. The shallower part of the depression will become the key areas for exploration and development of coal resources in the northern Qaidam Basin.展开更多
The uranium deposits in the Tuanyushan area of northern Qaidam Basin commonly occur in coal-bearing series. To decipher the U-enrichment mechanism and controlling factors in this area, a database of 72 drill cores, in...The uranium deposits in the Tuanyushan area of northern Qaidam Basin commonly occur in coal-bearing series. To decipher the U-enrichment mechanism and controlling factors in this area, a database of 72 drill cores, including 56 well-logs and 3 sampling wells, was examined for sedimentology and geochemistry in relation to uranium concentrations. The results show that coal-bearing series can influence uranium mineralization from two aspects, i.e., spatial distribution and dynamic control. Five types of uranium-bearing rocks are recognized, mainly occurring in the braided river and braided delta sedimentary facies, among which sandstones near the coals are the most important. The lithological associations of sandstone-type uranium deposits can be classified into three subtypes, termed as U-coal type, coal-U-coal type, and coal-U type, respectively. The coal and fine siliciclastic rocks in the coal- bearing series confined the U-rich fluid flow and uranium accumulation in the sandstone near them. Thus, the coal-bearing series can provide good accommodations for uranium mineralization. Coals and organic matters in the coal-bearing series may have served as reducing agents and absorbing barriers. Methane is deemed to be the main acidolysis hydrocarbon in the U-bearing beds, which shows a positive correlation with U-content in the sandstones in the coal-bearing series. Additionally, the 613C in the carbonate cements of the U-bearing sandstones indicates that the organic matters, associated with the coal around the sandstones, were involved in the carbonation, one important component of alteration in the Tuanyushan area. Recognition of the dual control of coal-bearing series on the uranium mineralization is significant for the development of coal circular economy, environmental protection during coal utilization and the security of national rare metal resources.展开更多
We investigated the geological factors associated with unsuccessful exploration wells in the northern margin of the Qaidam basin to better understand their cause.The structural situation,the hydrocarbon accumulation m...We investigated the geological factors associated with unsuccessful exploration wells in the northern margin of the Qaidam basin to better understand their cause.The structural situation,the hydrocarbon accumulation mechanism and unsuccessful well data collected from 1996 to 2005 were studied.The results show that the main geological factors associated with unsuccessful exploration wells are a lack of effective source rocks and a lack of effective traps,as well as the migration-accumulation conditions that exist in this area.The basin was reformed by Meso-Cenozoic tectonic evolution.Multi-stage tectonic activities have both positive and negative effects on hydrocarbon accumulation.Source rocks distribution,effective migration channels,effective traps and the tectonic evolution effects on hydrocarbons should be the key objects for further studies.展开更多
The current study tested the gas component and carbon isotopic composition of gas samples from 6 oilgas fields at the northern margin of Qaidam Basin, and established a chart to quantitatively identify the mixing rati...The current study tested the gas component and carbon isotopic composition of gas samples from 6 oilgas fields at the northern margin of Qaidam Basin, and established a chart to quantitatively identify the mixing ratio of source-mixed gas. Besides, this research quantitatively investigated the natural gas generated by different types of organic matter. The results show that different ratios of source-mixed gas exist in the 6 oil-gas fields at the northern margin of Qaidam Basin. Among them, Mabei has the highest mixing ratio of coal-type gas, followed by Nanbaxian, Mahai, Lenghu-4, Lenghu-3 and Lenghu-5, with the ratios of coal-type gas 91%, 87%, 83%, 66%, 55% and 36%, respectively. Lenghu-3 and Lenghu-4 oil-gas fields were mainly filled by coal-type gas earlier. For Lenghu-3, the gas was mainly generated from low matured source rocks in lower Jurassic Series of Lengxi sub-sag. For Lenghu-4, the gas was mainly generated from humus-mature source rocks in lower Jurassic Series of the northern slope of Kunteyi sub-sag. Gas in Lenghu-5 was mainly later filled oil-type gas, which was generated from high matured sapropelics in lower Jurassic Series of Kunteyi sub-sag. Earlier filled coal-type gas was the main part of Mahai, Nanbaxian and Mabei oil-gas fields. Gas source of Mahai was mainly generated from high mature humics in lower Jurassic Series of Yibei sub-sag; for Nanbaxian, the gas was mainly generated from high matured humics in middle-lower Jurassic Series of Saishiteng sub-sag; for Mabei, the gas was mainly generated from humus-mature source rocks in middle Jurassic Series of Yuqia sub-sag.展开更多
In order to develop appropriate reservoir protection measures in the northern margin of the Qaidam Basin and improve its oil and gas recovery efficiency,characteristics of clay minerals from eleven clay rock samples f...In order to develop appropriate reservoir protection measures in the northern margin of the Qaidam Basin and improve its oil and gas recovery efficiency,characteristics of clay minerals from eleven clay rock samples from the northern margin of the Qaidam Basin were investigated using X-ray diffraction analysis,the Scanning Electron Microscope(SEM)and energy spectrum analysis.Clay mineral composition and distribution characteristics of the main hydrocarbon reservoirs,i.e.,from the Jurassic and Paleogene-Neogene,were explored.We analyzed the main factors which affected these attributes.The results show that the major clay minerals in the northern margin are chlorite,kaolinite,illite,smectite and illite/smectite inter-stratified minerals.Illite is the most widely spread clay mineral in this area. Chlorite is mainly found in the entire Neogene and in shallow horizons of the Paleogene.Smectite is enriched in the shallow Paleogene-Neogene.There are large amounts of kaolinite and illite/smectite inter-stratified minerals in the Jurassic.The major factors affecting the different development of clay minerals in the region are properties of parent rocks,paleoclimate and paleowater media conditions, diagenesis transformation,tectonic and terrain conditions.展开更多
Previous studies of coal sequence stratigraphy have concentrated on coals associated with paralic depositional systems.Little attention has been paid to their counterparts in non-marine intra-mountain coal basins.The ...Previous studies of coal sequence stratigraphy have concentrated on coals associated with paralic depositional systems.Little attention has been paid to their counterparts in non-marine intra-mountain coal basins.The northern Qaidam Basin of northwestern China has been extensively developed with abundant oil and gas as well as coal resources in its Jurassic non-marine successions.A total of six sedimentary systems of the Early and Middle Jurassic展开更多
Cenozoic climatic and environmental changes in the arid Asian interior, and their possible relations with global climatic changes and the Tibetan Plateau uplift, have been intensively investigated and debated over pas...Cenozoic climatic and environmental changes in the arid Asian interior, and their possible relations with global climatic changes and the Tibetan Plateau uplift, have been intensively investigated and debated over past decades. Here we present 40-Myr (million years)-long n-alkane records from a continuous Cenozoic sediment sequence in the Dahonggou Section, Qaidam Basin, northern Tibetan Plateau, to infer environmental changes in the northern basin. A set of n-alkane indexes, including ACL, CPI and Paq, vary substantially and consistently throughout the records, which are interpreted to reflect relative contributions from terrestrial vascular plants vs. aquatic macrophytes, and thus indicate depositional environments. ACL values vary between 21 and 30; CP1 values range from 1.0 to 8.0; and Paq values change from 〈0.1 to 0.8 over the past 40-Myr. We have roughly identified two periods, at 25.8-21.0 Ma (million years ago) and 13.0-17.5 Ma, with higher ACL and CPI and lower Paq values indicating predominant lacustrine environments. Lower ACL and CPI values, together with higher Paq values, occurred at 〉25.8 Ma, 17.5-21.0 Ma, and 〈13.0 Ma, corresponding to alluvial fan/river deltaic deposits and shallow lacustrine settings, consistent with the observed features in sedimentological facies. The inferred Cenozoic environmental changes in the northern Qaidam Basin appear to correspond to global climatic changes.展开更多
This paper presents a quantitative analysis of Jurassic-Quaternary basement subsidence in the Delingha basin, a tensile basin and compressive mountain type diwa basin, and corrected for local sediment loading. Subside...This paper presents a quantitative analysis of Jurassic-Quaternary basement subsidence in the Delingha basin, a tensile basin and compressive mountain type diwa basin, and corrected for local sediment loading. Subsidence patterns have been investigated for the effects of erosion induced uplift by means of analytical estimation. The history of the Delingha basin has been divided into four stages: 204(?)~130 Ma (SⅠ ), 130~95 Ma (SⅡ ), 67~35 Ma (SⅢ ) and 35~0 Ma (SⅣ ), recording episodic tectonics and sedimentation respectively.展开更多
The Upper Paleogene lacustrine fine-grained sandstones in the hinterlands of the northern Qaidam Basin mainly contain two sweet spot intervals.Fracture/fault,microfacies,petrology,pore features,diagenesis,etc.,were in...The Upper Paleogene lacustrine fine-grained sandstones in the hinterlands of the northern Qaidam Basin mainly contain two sweet spot intervals.Fracture/fault,microfacies,petrology,pore features,diagenesis,etc.,were innovatively combined to confirm the controlling factors on the reservoir quality of shallow delta-lacustrine fine-grained sandstones.The diagenesis of the original lake/surface/meteoric freshwater and acidic fluids related to the faults and unconformity occurred in an open geochemical system.Comprehensive analysis shows that the Upper Paleogene fine-grained sandstones were primarily formed in the early diagenetic B substage to the middle diagenetic A substage.Reservoir quality was controlled by fault systems,microfacies,burial-thermal history,diagenesis,hydrocarbon charging events(HCE),and abnormally high pressure.Shallow and deep double fault systems are the pathways for fluid flow and hydrocarbon migration.Sandstones developed in the high energy settings such as overwater(ODC)and underwater distributary channels(UDC)provide the material foundation for reservoirs.Moderate burial depth(3000-4000 m),moderate geothermal field(2.7-3.2℃/100 m),and late HCE(later than E3)represent the important factors to protect and improve pore volume.Meteoric freshwater with high concentrations of CO_(2)and organic acids from thermal decarboxylation are the main fluids leading to the dissolution and reformation of feldspar,rock fragments,calcite and anhydrite cements.Abnormally high pressure caused by the undercompaction in a large set of argillaceous rocks is the key to form high-quality reservoirs.Abnormal pressure zones reduced and inhibited the damage of compaction and quartz overgrowth to reservoir pores,allowing them to be better preserved.A reservoir quality evaluation model with bidirectional migration pathways,rich in clay minerals,poor in cements,superimposed dissolution and abnormally high pressure was proposed for the ODC/UDC finegrained sandstones.This model will facilitate the future development of fine-grained sandstone reservoirs both in the Upper Paleogene of the Qaidam Basin and elsewhere.展开更多
Shear wave splitting measurement of teleseismic data has been used to determine the fast polarization directions and delay times for 38 temporary stations and 15 permanent stations from a NW linear seismic array acros...Shear wave splitting measurement of teleseismic data has been used to determine the fast polarization directions and delay times for 38 temporary stations and 15 permanent stations from a NW linear seismic array across the eastern Tarim basin(ETB) and the northern Tibetan Plateau(NTP),and 10 permanent stations on both sides of the array.We present an image of upper mantle anisotropy in the ETB and NTP using the 63 new measurements.The results show that the fast directions and delay times have complex spatial distribution characteristics.The delay times within the interior of the Tarim basin are very small,with an average value of 0.6 s,which is not only smaller than that in the Altyn Tagh fault and Tianshan on the southern and northern margins of the basin,but also smaller than that in the NTP,reflecting that the delay time of stable blocks is smaller than that of active blocks.Along the array,from east to west,the fast directions contrarotate from NNW in the southern Songpan-Garze terrane to NW in the northern Songpan-Garze terrane,to near E-W or ENE in the north of the East Kunlun fault and southern margin of the Qaidam basin,then first abruptly rotate to NW in the Qiman Tagh fault on the northwestern margin of the Qaidam basin,second abruptly rotate to ENE in the Altyn Tagh fault and south of the ETB,and third abruptly rotate to NW in the north of the ETB,then finally rotate to WNW in the Tianshan.The comparative analysis between the fast wave directions measured by shear wave splitting and predicted from the surface deformation field shows that,with the exclusion of the five observations with larger misfits within the interior of the ETB(with an average misfit of 27°),the misfits in the NTP and northern and southern margins of the Tarim basin are relatively small(with an average misfit of 9°).In addition,the fast wave directions of the tectonic units such as the Altyn Tagh fault,East Kunlun fault,and Tianshan are parallel to the strikes of faults and mountains in the region,which indicates that the deep and shallow deformations of the NTP and northern and southern margins of the ETB are consistent,where the crust-mantle coupling extent of lithospheric deformation is higher,according with the vertical coherent deformation of the lithosphere.Conversely,the crust-mantle coupling extent within the interior of the Tarim Basin is weak,and it is characterized by weak anisotropy,stable rigidity,and thick lithosphere,which may remain the “fossil” anisotropy of ancient craton.展开更多
The continental shales from the Middle Jurassic Shimengou Formation of the northern Qaidam Basin, northwestern China, have been investigated in recent years because of their shale gas potential. In this study, a total...The continental shales from the Middle Jurassic Shimengou Formation of the northern Qaidam Basin, northwestern China, have been investigated in recent years because of their shale gas potential. In this study, a total of twenty-two shale samples were collected from the YQ-1 borehole in the Yuqia Coalfield, northern Qaidam Basin. The total organic carbon (TOC) contents, pore structure parameters, and fractal characteristics of the samples were investigated using TOC analysis, lowtemperature nitrogen adsorption experiments, and fractal analysis. The results show that the average pore size of the Shimengou shales varied from 8.149 nm to 20.635 nm with a mean value of 10.74 nm, which is considered mesopore-sized. The pores of the shales are mainly inkbottle- and slit-shaped. The sedimentary environment plays an essential role in controlling the TOC contents of the low maturity shales, with the TOC values of shales from deep to semi-deep lake facies (mean: 5.23%) being notably higher than those of the shore-shallow lake facies (mean: 0.65%). The fractal dimensions range from 2.4639 to 2.6857 with a mean of 2.6122, higher than those of marine shales, which indicates that the pore surface was rougher and the pore structure more complex in these continental shales. The fraetal dimensions increase with increasing total pore volume and total specific surface area, and with decreasing average pore size. With increasing TOC contents in shales, the fractal dimensions increase first and then decrease, with the highest value occurring at 2% of TOC content, which is in accordance with the trends between the TOC and both total specific surface area and total pore volume. The pore structure complexity and pore surface roughness of these low-maturity shales would be controlled by the combined effects of both sedimentary environments and the TOC contents.展开更多
基金Supported by the Second Tibetan Plateau Scientific Expedition and Research Program(No.2019 QZKK 0805)the National Natural Science Foundation of China(No.U 21 A 2018)the Foundation of Department of Qinghai Science&Technology(No.2020-ZJ-T 06)。
文摘The Qaidam Basin(QB)is a concentrated distribution area and chemical industrial bases of salt lakes in China.Lakes in the QB have been expanding during the past 20 years.Rapid lake expansion resulted in some considerable scientific issues on the protection of salt lake resources and infrastructure,and monitoring of hydrological processes at the lake-basin scale.Although the spatial-temporal trends of lake changes on the Qinghai-Tibet Plateau(QTP)have been well documented,the underlying influencing mechanism and hydrogeological implications of rapid lake changes in the QB are not well understood.Three lakes in the northern QB were selected to investigate lake water level fluctuations on different time scales based on extensive in-situ monitoring and satellite observations.The influencing mechanism and hydrogeological implications of rapid changes of terminal lakes were discussed in combination with the reported increasing precipitation rate and mass balance of glaciers in the northern QTP.Results reveal the following:(1)the fluctuation pattern of Sugan Lake was asynchronous and out of phase with that of Xiao Qaidam and Toson lakes during the monitoring period;(2)Sugan Lake water rose gradually,and the rise interval was from late April to early July.In contrast,Xiao Qaidam and Toson lakes took on a rapid and steep rise,and the rise intervalwas from late July to September;(3)the influencing mechanisms for rapid lake fluctuations are controlled by different factors:glacier and snow melting with increasing temperature for Sugan Lake and increasing precipitation for Xiao Qaidam and Toson lakes;(4)in accordance with different intervals and influencing mechanisms of rapid lake expansions in the QB,hydrological risk precaution of lakes and corresponding river catchments was conducted in different parts of the basin.This study provided an important scientific basis for assessing the hydrological process and hydrological risk precaution,and protection of salt lake resources along with rapid lake expansions in the arid area.
文摘The Late Cretaceous tectonic upheaval was an important event during the evolution of the Qaidam Basin, resulting in the omission of the Upper Cretaceous in the whole basin and unconformities between the Paleogene sequence and pre-K2 strata. Inte-grating geological and geophysical data, two different groups of Late Cretaceous faults were recognized in the study area, one group consisting of E-W extending strike-slip faults (e.g., the Maxian and Yema-Jinan faults in the Mahai area, which caused an E-W omission zone of Mesozoic), while the other one has NW-SE thrust faults, resulting in NW-SE fold-and-thrust belts. Considering the different strikes and scale of these two groups, a simple-shear model has been employed to explain this structural phenomenon. The NW-SE thrust faults were thought to be subsidiary to the E-W strike-slip faults. Putting this into the framework of the Cretaceous paleogeographic environment of central Asia, it is inferred that this tectonic event of the Qaidam Basin is a response to the continuous northward drifting of the India plate.
基金funded by the Natural Science Foundation of China (Grants No. 41501209 and 41571177)the Fundamental Research Funds for the Central Universities (862457, lzujbky-2016-22)
文摘The Northern Qaidam Basin is located at the northeastern part of the Qinghai-Tibetan Plateau. It contains very thick Cenozoic terrestrial clastic sediments, which records the formation of the northern Qaidam Basin due to compressional deformation during the Indo-Asian collision. In this paper, we used detrital apatite fission-track thermochronology, including 4 sandstones and 2 conglomerates samples from the Lulehe section, to reveal the Cenozoic evolution of the northern Qaidam Basin. Fission-track dating indicated the source region of the Lulehe section has experiencedimportant cooling and uplifting in the Late Cretaceous(at ~85.1 Ma and ~65 Ma) and the Eocene(~52 Ma), respectively. The AFT age distribution on the section suggested that the provenance of Lulehe section sediments were mainly derived from the south Qilian Shan(Qilian Mountains) and Altun Shan(Altun Mountains), and two significantly provenance changes may occur at 43.4-46.1 Ma and ~37.8 Ma, respectively. The results may have strong constrains on the Cenozoic deformation and tectonic evolution of the northern Qaidam Basin and Qinghai-Tibet Plateau.
基金supported by National Science and Technology Major Project (2011ZX05009-001)
文摘We investigate the growth of the northern Tibetan Plateau and associated climate change by applying oxygen and carbon isotopic compositions in Cenozoic strata in the southwestern Qaidam basin. The X-ray diffraction and isotopic studies reveal that the carbonate minerals are mainly authigenic and they do not preserve any evidence for detrital carbonate and diagenesis. The isotope data show large fluctuations in the δ^(18)O and δ^(13)C values in the middle-late Eocene, indicating relatively warm and seasonal dry climate.The positive correlation of the δ^(18)O and δ^(13)C values in the Oligocene and the positive shift of the δ^(13)C values from the Eocene to Oligocene suggest that the climate changed to arid in the Oligocene. However,the δ^(18) values show negative shift, which is closely related to the global cooling event. During the Miocene, the δ^(13)C values vary between-2‰ and-4‰, whereas the δ^(18)O values show continuous negative shift. The mean δ^(18) values decrease from-8.5‰, in the early Miocene to-10.0‰, in the late Miocene. The stable isotope-based paleoaltimetry results suggest that the elevation of the southwestern Qaidam basin was approximately 1500 m in the middle-late Eocene and Oligocene. Subsequently, during Miocene the crustal uplift process started and the elevation reached approximately 2000 m in the early Miocene and 2500 m in the late Miocene, which suggests large-scale growth of the northern Tibet Plateau during the Miocene.
基金the National Natural Science Foundation of China(49732070 ,49902018)the National Key Project for Basic Research on the Tibetan Plateau(G1998040805)the Key Project of the Ministry of Land and Resources of China(20010201).
文摘Eclogites have been recently discovered in the Xitieshan area in the middlesegment of the northern margin of the Qaidam basin. These eclogites, together with those recognizedearlier in the Yuka area of the western segment of the northern margin of the Qaidam basin and inthe Dulan area of the eastern segment of the northern margin of the Qaidam basin, form an eclogitebelt with a length of 350 km. A comparison of the eclogites from the Yuka and Xitieshan areassuggests that they show different country rocks, microtextures, mineral assemblages, and especially,different peak temperatures, PT paths during decompression and isotopic features. Eclogites fromthe Yuka area bear evidence of prograde metamorphism, such as prograde mineral relics in garnet andgrowth zoning of garnet, and hairpin-shaped PT paths with coincidence of the baric and thermal peaksof metamorphism, which reflect rapid burial and uplift. Sm-Nd isotopic determination shows obviousSm-Nd disequilibrium, and no isochron ages of Early Paleozoic metamorphism was obtained. On thecontrary, the Xitieshan eclogite was subjected to metamorphism of higher eclogite-facies andpost-eclogite-facies temperatures, showing an obvious granulite-facies overprint. A tentative PTpath for the Xitieshan area suggests that the baric peak preceded the thermal culmination. Wholerock-garnet-omphacite Sm-Nd isotopic data give an isochron age in the Early Paleozoic. Thedifferences between the two eclogites imply their different tectonic-thermal history during theirburial and uplift.
文摘The distribution of the Jurassic coal measures in the northern Qaidam Basin is obviously controlled by the regional structures. Based on the existing data of coalfield exploration and combined with the analysis of coalfield basement structures, features of the main faults, and the distribution of coal measures, this paper brings forward a scheme of coalfield tectonic divisional units and the definition of the coal-controlling structural styles in the northern Qaidam Basin. The structure control of the distribution of coal measures is further discussed. Several stages of regional tectonic activities since the Indosinian has led to the distribution of coal measures into the characteristics of zonation from the north to south and block from east to west. The results indicate that the structural deformations are the most intense in the front of the three uplifted belts, which are characterized by the combination of thrusts. The coal measures are uplifted to the shallow formations, and are easy to be exploited, but the scale of mines is small because of serious damages by the coal distribution. On the contrary, the stress and strain are weak in the three depressions, with the coal-controlling structural styles being mainly the thrust-fold and thrust-monocline combinations. The distribution of coals in the depressions is relatively stable. The shallower part of the depression will become the key areas for exploration and development of coal resources in the northern Qaidam Basin.
基金supported by the Major National Science and Technology Program of China (grants No. 2016ZX05041004)the National Natural Science Foundation of China (grant No. 41572090)High-level Talent Recruitment Project of North China University of Water Resource and Electric (grant No. 40481)
文摘The uranium deposits in the Tuanyushan area of northern Qaidam Basin commonly occur in coal-bearing series. To decipher the U-enrichment mechanism and controlling factors in this area, a database of 72 drill cores, including 56 well-logs and 3 sampling wells, was examined for sedimentology and geochemistry in relation to uranium concentrations. The results show that coal-bearing series can influence uranium mineralization from two aspects, i.e., spatial distribution and dynamic control. Five types of uranium-bearing rocks are recognized, mainly occurring in the braided river and braided delta sedimentary facies, among which sandstones near the coals are the most important. The lithological associations of sandstone-type uranium deposits can be classified into three subtypes, termed as U-coal type, coal-U-coal type, and coal-U type, respectively. The coal and fine siliciclastic rocks in the coal- bearing series confined the U-rich fluid flow and uranium accumulation in the sandstone near them. Thus, the coal-bearing series can provide good accommodations for uranium mineralization. Coals and organic matters in the coal-bearing series may have served as reducing agents and absorbing barriers. Methane is deemed to be the main acidolysis hydrocarbon in the U-bearing beds, which shows a positive correlation with U-content in the sandstones in the coal-bearing series. Additionally, the 613C in the carbonate cements of the U-bearing sandstones indicates that the organic matters, associated with the coal around the sandstones, were involved in the carbonation, one important component of alteration in the Tuanyushan area. Recognition of the dual control of coal-bearing series on the uranium mineralization is significant for the development of coal circular economy, environmental protection during coal utilization and the security of national rare metal resources.
基金Project XQ-2004-01 supported by the National Oil Project of China
文摘We investigated the geological factors associated with unsuccessful exploration wells in the northern margin of the Qaidam basin to better understand their cause.The structural situation,the hydrocarbon accumulation mechanism and unsuccessful well data collected from 1996 to 2005 were studied.The results show that the main geological factors associated with unsuccessful exploration wells are a lack of effective source rocks and a lack of effective traps,as well as the migration-accumulation conditions that exist in this area.The basin was reformed by Meso-Cenozoic tectonic evolution.Multi-stage tectonic activities have both positive and negative effects on hydrocarbon accumulation.Source rocks distribution,effective migration channels,effective traps and the tectonic evolution effects on hydrocarbons should be the key objects for further studies.
基金Financial support from the National Natural Science Foundation of China (No. 40730422)the Priority Academic Program Development of Jiangsu Higher Education Institutions of Chinadata provided by Jurassic Project Department in Research Institute of Petroleum Exploration and Development of China are gratefully acknowledged
文摘The current study tested the gas component and carbon isotopic composition of gas samples from 6 oilgas fields at the northern margin of Qaidam Basin, and established a chart to quantitatively identify the mixing ratio of source-mixed gas. Besides, this research quantitatively investigated the natural gas generated by different types of organic matter. The results show that different ratios of source-mixed gas exist in the 6 oil-gas fields at the northern margin of Qaidam Basin. Among them, Mabei has the highest mixing ratio of coal-type gas, followed by Nanbaxian, Mahai, Lenghu-4, Lenghu-3 and Lenghu-5, with the ratios of coal-type gas 91%, 87%, 83%, 66%, 55% and 36%, respectively. Lenghu-3 and Lenghu-4 oil-gas fields were mainly filled by coal-type gas earlier. For Lenghu-3, the gas was mainly generated from low matured source rocks in lower Jurassic Series of Lengxi sub-sag. For Lenghu-4, the gas was mainly generated from humus-mature source rocks in lower Jurassic Series of the northern slope of Kunteyi sub-sag. Gas in Lenghu-5 was mainly later filled oil-type gas, which was generated from high matured sapropelics in lower Jurassic Series of Kunteyi sub-sag. Earlier filled coal-type gas was the main part of Mahai, Nanbaxian and Mabei oil-gas fields. Gas source of Mahai was mainly generated from high mature humics in lower Jurassic Series of Yibei sub-sag; for Nanbaxian, the gas was mainly generated from high matured humics in middle-lower Jurassic Series of Saishiteng sub-sag; for Mabei, the gas was mainly generated from humus-mature source rocks in middle Jurassic Series of Yuqia sub-sag.
基金provided by the National Petroleum and Gas Resources Strategic Area Selection Survey & Evaluation projects in 2005,is gratefully acknowledged.
文摘In order to develop appropriate reservoir protection measures in the northern margin of the Qaidam Basin and improve its oil and gas recovery efficiency,characteristics of clay minerals from eleven clay rock samples from the northern margin of the Qaidam Basin were investigated using X-ray diffraction analysis,the Scanning Electron Microscope(SEM)and energy spectrum analysis.Clay mineral composition and distribution characteristics of the main hydrocarbon reservoirs,i.e.,from the Jurassic and Paleogene-Neogene,were explored.We analyzed the main factors which affected these attributes.The results show that the major clay minerals in the northern margin are chlorite,kaolinite,illite,smectite and illite/smectite inter-stratified minerals.Illite is the most widely spread clay mineral in this area. Chlorite is mainly found in the entire Neogene and in shallow horizons of the Paleogene.Smectite is enriched in the shallow Paleogene-Neogene.There are large amounts of kaolinite and illite/smectite inter-stratified minerals in the Jurassic.The major factors affecting the different development of clay minerals in the region are properties of parent rocks,paleoclimate and paleowater media conditions, diagenesis transformation,tectonic and terrain conditions.
文摘Previous studies of coal sequence stratigraphy have concentrated on coals associated with paralic depositional systems.Little attention has been paid to their counterparts in non-marine intra-mountain coal basins.The northern Qaidam Basin of northwestern China has been extensively developed with abundant oil and gas as well as coal resources in its Jurassic non-marine successions.A total of six sedimentary systems of the Early and Middle Jurassic
基金partially supported by the National Basic Research Program of China (2010CB833406)National Natural Science Foundation of China (NSFC 41172008 and 41372002)+1 种基金Distinguished Young Scientist of Ministry of Land and Resources, China, and Hong Kong RGC (HKU 703809P)HKU research facility was supported by the Special Equipment Grant from the University Grants Committee of the Hong Kong Special Administrative Region, China (SEG_HKU01)
文摘Cenozoic climatic and environmental changes in the arid Asian interior, and their possible relations with global climatic changes and the Tibetan Plateau uplift, have been intensively investigated and debated over past decades. Here we present 40-Myr (million years)-long n-alkane records from a continuous Cenozoic sediment sequence in the Dahonggou Section, Qaidam Basin, northern Tibetan Plateau, to infer environmental changes in the northern basin. A set of n-alkane indexes, including ACL, CPI and Paq, vary substantially and consistently throughout the records, which are interpreted to reflect relative contributions from terrestrial vascular plants vs. aquatic macrophytes, and thus indicate depositional environments. ACL values vary between 21 and 30; CP1 values range from 1.0 to 8.0; and Paq values change from 〈0.1 to 0.8 over the past 40-Myr. We have roughly identified two periods, at 25.8-21.0 Ma (million years ago) and 13.0-17.5 Ma, with higher ACL and CPI and lower Paq values indicating predominant lacustrine environments. Lower ACL and CPI values, together with higher Paq values, occurred at 〉25.8 Ma, 17.5-21.0 Ma, and 〈13.0 Ma, corresponding to alluvial fan/river deltaic deposits and shallow lacustrine settings, consistent with the observed features in sedimentological facies. The inferred Cenozoic environmental changes in the northern Qaidam Basin appear to correspond to global climatic changes.
文摘This paper presents a quantitative analysis of Jurassic-Quaternary basement subsidence in the Delingha basin, a tensile basin and compressive mountain type diwa basin, and corrected for local sediment loading. Subsidence patterns have been investigated for the effects of erosion induced uplift by means of analytical estimation. The history of the Delingha basin has been divided into four stages: 204(?)~130 Ma (SⅠ ), 130~95 Ma (SⅡ ), 67~35 Ma (SⅢ ) and 35~0 Ma (SⅣ ), recording episodic tectonics and sedimentation respectively.
基金supported by the National Major Science and Technology Projects of China(No.2016ZX05033-001002)the National Natural Science Foundation of China(No.41272155)the China Scholarship Council。
文摘The Upper Paleogene lacustrine fine-grained sandstones in the hinterlands of the northern Qaidam Basin mainly contain two sweet spot intervals.Fracture/fault,microfacies,petrology,pore features,diagenesis,etc.,were innovatively combined to confirm the controlling factors on the reservoir quality of shallow delta-lacustrine fine-grained sandstones.The diagenesis of the original lake/surface/meteoric freshwater and acidic fluids related to the faults and unconformity occurred in an open geochemical system.Comprehensive analysis shows that the Upper Paleogene fine-grained sandstones were primarily formed in the early diagenetic B substage to the middle diagenetic A substage.Reservoir quality was controlled by fault systems,microfacies,burial-thermal history,diagenesis,hydrocarbon charging events(HCE),and abnormally high pressure.Shallow and deep double fault systems are the pathways for fluid flow and hydrocarbon migration.Sandstones developed in the high energy settings such as overwater(ODC)and underwater distributary channels(UDC)provide the material foundation for reservoirs.Moderate burial depth(3000-4000 m),moderate geothermal field(2.7-3.2℃/100 m),and late HCE(later than E3)represent the important factors to protect and improve pore volume.Meteoric freshwater with high concentrations of CO_(2)and organic acids from thermal decarboxylation are the main fluids leading to the dissolution and reformation of feldspar,rock fragments,calcite and anhydrite cements.Abnormally high pressure caused by the undercompaction in a large set of argillaceous rocks is the key to form high-quality reservoirs.Abnormal pressure zones reduced and inhibited the damage of compaction and quartz overgrowth to reservoir pores,allowing them to be better preserved.A reservoir quality evaluation model with bidirectional migration pathways,rich in clay minerals,poor in cements,superimposed dissolution and abnormally high pressure was proposed for the ODC/UDC finegrained sandstones.This model will facilitate the future development of fine-grained sandstone reservoirs both in the Upper Paleogene of the Qaidam Basin and elsewhere.
基金supported by the National Natural Science Foundation of China (Grant Nos.42074053,41474073)the Second Tibetan Plateau Scientific Expedition and Research Program (Grant No.2019QZKK0701)the Fundamental Research Funds from the Institute of Geophysics,China Earthquake Administration (Grant No.DQJB19B30)。
文摘Shear wave splitting measurement of teleseismic data has been used to determine the fast polarization directions and delay times for 38 temporary stations and 15 permanent stations from a NW linear seismic array across the eastern Tarim basin(ETB) and the northern Tibetan Plateau(NTP),and 10 permanent stations on both sides of the array.We present an image of upper mantle anisotropy in the ETB and NTP using the 63 new measurements.The results show that the fast directions and delay times have complex spatial distribution characteristics.The delay times within the interior of the Tarim basin are very small,with an average value of 0.6 s,which is not only smaller than that in the Altyn Tagh fault and Tianshan on the southern and northern margins of the basin,but also smaller than that in the NTP,reflecting that the delay time of stable blocks is smaller than that of active blocks.Along the array,from east to west,the fast directions contrarotate from NNW in the southern Songpan-Garze terrane to NW in the northern Songpan-Garze terrane,to near E-W or ENE in the north of the East Kunlun fault and southern margin of the Qaidam basin,then first abruptly rotate to NW in the Qiman Tagh fault on the northwestern margin of the Qaidam basin,second abruptly rotate to ENE in the Altyn Tagh fault and south of the ETB,and third abruptly rotate to NW in the north of the ETB,then finally rotate to WNW in the Tianshan.The comparative analysis between the fast wave directions measured by shear wave splitting and predicted from the surface deformation field shows that,with the exclusion of the five observations with larger misfits within the interior of the ETB(with an average misfit of 27°),the misfits in the NTP and northern and southern margins of the Tarim basin are relatively small(with an average misfit of 9°).In addition,the fast wave directions of the tectonic units such as the Altyn Tagh fault,East Kunlun fault,and Tianshan are parallel to the strikes of faults and mountains in the region,which indicates that the deep and shallow deformations of the NTP and northern and southern margins of the ETB are consistent,where the crust-mantle coupling extent of lithospheric deformation is higher,according with the vertical coherent deformation of the lithosphere.Conversely,the crust-mantle coupling extent within the interior of the Tarim Basin is weak,and it is characterized by weak anisotropy,stable rigidity,and thick lithosphere,which may remain the “fossil” anisotropy of ancient craton.
文摘The continental shales from the Middle Jurassic Shimengou Formation of the northern Qaidam Basin, northwestern China, have been investigated in recent years because of their shale gas potential. In this study, a total of twenty-two shale samples were collected from the YQ-1 borehole in the Yuqia Coalfield, northern Qaidam Basin. The total organic carbon (TOC) contents, pore structure parameters, and fractal characteristics of the samples were investigated using TOC analysis, lowtemperature nitrogen adsorption experiments, and fractal analysis. The results show that the average pore size of the Shimengou shales varied from 8.149 nm to 20.635 nm with a mean value of 10.74 nm, which is considered mesopore-sized. The pores of the shales are mainly inkbottle- and slit-shaped. The sedimentary environment plays an essential role in controlling the TOC contents of the low maturity shales, with the TOC values of shales from deep to semi-deep lake facies (mean: 5.23%) being notably higher than those of the shore-shallow lake facies (mean: 0.65%). The fractal dimensions range from 2.4639 to 2.6857 with a mean of 2.6122, higher than those of marine shales, which indicates that the pore surface was rougher and the pore structure more complex in these continental shales. The fraetal dimensions increase with increasing total pore volume and total specific surface area, and with decreasing average pore size. With increasing TOC contents in shales, the fractal dimensions increase first and then decrease, with the highest value occurring at 2% of TOC content, which is in accordance with the trends between the TOC and both total specific surface area and total pore volume. The pore structure complexity and pore surface roughness of these low-maturity shales would be controlled by the combined effects of both sedimentary environments and the TOC contents.