East Asia experienced a significant interdecadal climate shift around the late 1970s, with more floods in the valley of the Yangtze River of central-eastern China and more severe drought in North China since then. Whe...East Asia experienced a significant interdecadal climate shift around the late 1970s, with more floods in the valley of the Yangtze River of central-eastern China and more severe drought in North China since then. Whether global SST variations have played a role in this shift is unclear. In the present study, this issue is investigated by ensemble experiments of an atmospheric general circulation model (AGCM), the GFDL AM2, since one validation reveals that the model simulates the observed East Asian Summer Monsoon (EASM) well. The results suggest that decadal global SST variations may have played a substantial role in this climate shift. Further examination of the associated atmospheric circulation shows that these results are physically reasonable.展开更多
East Asia has experienced a significant interdecadal climate shift since the late 1970s. This shift was accompanied by a decadal change of global SST. Previous studies have suggested that the decadal shift of global S...East Asia has experienced a significant interdecadal climate shift since the late 1970s. This shift was accompanied by a decadal change of global SST. Previous studies have suggested that the decadal shift of global SST background status played a substantial role in such a climatic shift. However, the individual roles of different regional SSTs remain unclear. In this study, we investigated these roles using ensemble experiments of an atmospheric general circulation model, GFDL (Geophysical Fluid Dynamics Laboratory) AM2. Two kinds of ensembles were performed. The first was a control ensemble in which the model was driven with the observed climatological SSTs. The second was an experimental ensemble in which the model was driven with the observed climatological SSTs plus interdecadal SST background shifts in separate ocean regions. The results suggest that the SST shift in the tropics exerted more important influence than those in the extratropics, although the latter contribute to the shift modestly. The variations of summer monsoonal circulation systems, including the South Asian High, the West Pacific Subtropical High, and the lower-level air flow, were analyzed. The results show that, in comparison with those induced by extratropical SSTs, the shifts induced by tropical SSTs bear more similarity to the observations and to the simulations with global SSTs prescribed. In particular, the observed SST shift in the tropical Pacific Ocean, rather than the Indian Ocean, contributed significantly to the shift of East Asian summer monsoon since the 1970s.展开更多
By employing the NCEP/NCAR reanalysis data sets(1 000 to 10 hPa,2.5°× 2.5°),the thermal forcing impacts are analyzed of an easterly vortex(shortened as EV) over the tropical upper troposphere on the qua...By employing the NCEP/NCAR reanalysis data sets(1 000 to 10 hPa,2.5°× 2.5°),the thermal forcing impacts are analyzed of an easterly vortex(shortened as EV) over the tropical upper troposphere on the quasi-horizontal movement of the Western Pacific Subtropical Anticyclone(shortened as WPS A) during 22-25 June 2003.The relevant mechanisms are discussed as well.It is shown that the distribution and intensity of the non-adiabatic effect near the EV result in the anomalous eastward retreat of the WPSA.The WPSA prefers extending to the colder region,i.e.,it moves toward the region in which the non-adiabatic heating is weakening or the cooling is strengthening.During the WPSA retreat,the apparent changes of non-adiabatic heating illustrate the characteristics of enhanced cooling in the east side of the EV.Meanwhile,the cooling in the west side exhibits a weakened eastward trend,most prominently at 300 hPa in the troposphere.The evidence on the factors causing the change in thermal condition is found:the most important contribution to the heating-rate trend is the vertical transport term,followed in turn by the local change in the heating rate term and the horizontal advection term.As a result,the atmospheric non-adiabatic heating generated by the vertical transport and local change discussed above is mainly connected to the retreat of the WPSA.展开更多
EAST (experimental advanced superconducting tokamak) fast control power supply is a high-capacity single-phase AC/DC/AC inverter power supply, which traces the displacement signal of plasma, and excites coils in a v...EAST (experimental advanced superconducting tokamak) fast control power supply is a high-capacity single-phase AC/DC/AC inverter power supply, which traces the displacement signal of plasma, and excites coils in a vacuum vessel to produce a magnetic field that realizes plasma stabilization. To meet the requirements of a large current and fast response, the multi- ple structure of the carrier phase-shift three-level inverter is presented, which realizes parallelled multi-inverters, raises the equivalent switching frequency of the inverters and improves the per- formance of output waves. In this work the design scheme is analyzed, and the output harmonic characteristic of parallel inverters is studied. The simulation and experimental results confirm that the scheme and control strategy is valid. The power supply system can supply a large current, and has a perfect performance on harmonic features as well as the ability of a fast response.展开更多
Recent changes in precipitation regime in South-East Asia are a subject of ongoing discussion. In this article, for the first time, evidence of a precipitation regime shift during the mid-1970s in the Northern Hemisph...Recent changes in precipitation regime in South-East Asia are a subject of ongoing discussion. In this article, for the first time, evidence of a precipitation regime shift during the mid-1970s in the Northern Hemispheric part of South-East Asia is demonstrated. The detection of regime shifts is made possible by using a new comprehensive dataset of daily precipitation records (South-East Asian Climate Assessment and Dataset) and applying a novel Bayesian approach for regime shift detection. After the detected regime shift event in the mid-1970s, significant changes in precipitation distribution occurred in the Northern Hemispheric regions—Indochina Peninsula and the Philippines. More specifically, dry days became up to 10% more frequent in some regions. However, no precipitation regime shift is detected in Southern Hemisphere regions—Java and Northern Australia, were the number of observed dry days increased gradually.展开更多
基金supported by the National NaturalScience Foundation of China with Grant Nos. 90711004and 40775053 the Innovation Key Program (GrantNos. KZCX2-YW-Q11-03 and KZCX2-YW-Q03-08) of the Chinese Academy of Sciences.
文摘East Asia experienced a significant interdecadal climate shift around the late 1970s, with more floods in the valley of the Yangtze River of central-eastern China and more severe drought in North China since then. Whether global SST variations have played a role in this shift is unclear. In the present study, this issue is investigated by ensemble experiments of an atmospheric general circulation model (AGCM), the GFDL AM2, since one validation reveals that the model simulates the observed East Asian Summer Monsoon (EASM) well. The results suggest that decadal global SST variations may have played a substantial role in this climate shift. Further examination of the associated atmospheric circulation shows that these results are physically reasonable.
基金This research was jointly supported by the National Basic Research Program of China,"Structures,Variability and Climatic Impacts of Ocean Circulation and Warm Pool in the Tropical Pacific Ocean",the National Science Foundation of China under grant 41205048 and the special projects of China Meteorological Administration on public interests
文摘East Asia has experienced a significant interdecadal climate shift since the late 1970s. This shift was accompanied by a decadal change of global SST. Previous studies have suggested that the decadal shift of global SST background status played a substantial role in such a climatic shift. However, the individual roles of different regional SSTs remain unclear. In this study, we investigated these roles using ensemble experiments of an atmospheric general circulation model, GFDL (Geophysical Fluid Dynamics Laboratory) AM2. Two kinds of ensembles were performed. The first was a control ensemble in which the model was driven with the observed climatological SSTs. The second was an experimental ensemble in which the model was driven with the observed climatological SSTs plus interdecadal SST background shifts in separate ocean regions. The results suggest that the SST shift in the tropics exerted more important influence than those in the extratropics, although the latter contribute to the shift modestly. The variations of summer monsoonal circulation systems, including the South Asian High, the West Pacific Subtropical High, and the lower-level air flow, were analyzed. The results show that, in comparison with those induced by extratropical SSTs, the shifts induced by tropical SSTs bear more similarity to the observations and to the simulations with global SSTs prescribed. In particular, the observed SST shift in the tropical Pacific Ocean, rather than the Indian Ocean, contributed significantly to the shift of East Asian summer monsoon since the 1970s.
基金LASW State Key Laboratory Special Fund(2014LASW-A03)National Science Foundation of China(41475041)
文摘By employing the NCEP/NCAR reanalysis data sets(1 000 to 10 hPa,2.5°× 2.5°),the thermal forcing impacts are analyzed of an easterly vortex(shortened as EV) over the tropical upper troposphere on the quasi-horizontal movement of the Western Pacific Subtropical Anticyclone(shortened as WPS A) during 22-25 June 2003.The relevant mechanisms are discussed as well.It is shown that the distribution and intensity of the non-adiabatic effect near the EV result in the anomalous eastward retreat of the WPSA.The WPSA prefers extending to the colder region,i.e.,it moves toward the region in which the non-adiabatic heating is weakening or the cooling is strengthening.During the WPSA retreat,the apparent changes of non-adiabatic heating illustrate the characteristics of enhanced cooling in the east side of the EV.Meanwhile,the cooling in the west side exhibits a weakened eastward trend,most prominently at 300 hPa in the troposphere.The evidence on the factors causing the change in thermal condition is found:the most important contribution to the heating-rate trend is the vertical transport term,followed in turn by the local change in the heating rate term and the horizontal advection term.As a result,the atmospheric non-adiabatic heating generated by the vertical transport and local change discussed above is mainly connected to the retreat of the WPSA.
基金supported by Key Project of National Ninth Five-Year Research Program of China[(1998)1303]
文摘EAST (experimental advanced superconducting tokamak) fast control power supply is a high-capacity single-phase AC/DC/AC inverter power supply, which traces the displacement signal of plasma, and excites coils in a vacuum vessel to produce a magnetic field that realizes plasma stabilization. To meet the requirements of a large current and fast response, the multi- ple structure of the carrier phase-shift three-level inverter is presented, which realizes parallelled multi-inverters, raises the equivalent switching frequency of the inverters and improves the per- formance of output waves. In this work the design scheme is analyzed, and the output harmonic characteristic of parallel inverters is studied. The simulation and experimental results confirm that the scheme and control strategy is valid. The power supply system can supply a large current, and has a perfect performance on harmonic features as well as the ability of a fast response.
文摘Recent changes in precipitation regime in South-East Asia are a subject of ongoing discussion. In this article, for the first time, evidence of a precipitation regime shift during the mid-1970s in the Northern Hemispheric part of South-East Asia is demonstrated. The detection of regime shifts is made possible by using a new comprehensive dataset of daily precipitation records (South-East Asian Climate Assessment and Dataset) and applying a novel Bayesian approach for regime shift detection. After the detected regime shift event in the mid-1970s, significant changes in precipitation distribution occurred in the Northern Hemispheric regions—Indochina Peninsula and the Philippines. More specifically, dry days became up to 10% more frequent in some regions. However, no precipitation regime shift is detected in Southern Hemisphere regions—Java and Northern Australia, were the number of observed dry days increased gradually.