This study examines the spatio-temporal characteristics of heavy precipitation forecasts in eastern China from the European Centre for Medium-Range Weather Forecasts(ECMWF) using the time-domain version of the Method ...This study examines the spatio-temporal characteristics of heavy precipitation forecasts in eastern China from the European Centre for Medium-Range Weather Forecasts(ECMWF) using the time-domain version of the Method for Object-based Diagnostic Evaluation(MODE-TD). A total of 23 heavy rainfall cases occurring between 2018 and 2021 are selected for analysis. Using Typhoon “Rumbia” as a case study, the paper illustrates how the MODE-TD method assesses the overall simulation capability of models for the life history of precipitation systems. The results of multiple tests with different parameter configurations reveal that the model underestimates the number of objects’ forecasted precipitation tracks, particularly at smaller radii. Additionally, the analysis based on centroid offset and area ratio tests for different classified precipitation objects indicates that the model performs better in predicting large-area, fast-moving, and longlifespan precipitation objects. Conversely, it tends to have less accurate predictions for small-area, slow-moving, and shortlifespan precipitation objects. In terms of temporal characteristics, the model overestimates the forecasted movement speed for precipitation objects with small-area, slow movement, or both long and short lifespans while underestimating it for precipitation with fast movement. In terms of temporal characteristics, the model tends to overestimate the forecasted movement speed for precipitation objects with small-area, slow movement, or both long and short lifespans while underestimating it for precipitation with fast movement. Overall, the model provides more accurate predictions for the duration and dissipation of precipitation objects with large-area or long-lifespan(such as typhoon precipitation) while having large prediction errors for precipitation objects with small-area or short-lifespan. Furthermore, the model’s simulation results regarding the generation of precipitation objects show that it performs relatively well in simulating the generation of large-area and fast-moving precipitation objects. However, there are significant differences in the forecasted generation of small-area and slow-moving precipitation objects after 9 hours.展开更多
Winter precipitation over eastern China displays remarkable interannual variability,which has been suggested to be closely related to El Niño-Southern Oscillation(ENSO).This study finds that ENSO impacts on easte...Winter precipitation over eastern China displays remarkable interannual variability,which has been suggested to be closely related to El Niño-Southern Oscillation(ENSO).This study finds that ENSO impacts on eastern China precipitation patterns exhibit obvious differences in early(November-December)and late(January-February)winter.In early winter,precipitation anomalies associated with ENSO are characterized by a monopole spatial distribution over eastern China.In contrast,the precipitation anomaly pattern in late winter remarkably changes,manifesting as a dipole spatial distribution.The noteworthy change in precipitation responses from early to late winter can be largely attributed to the seasonally varying Kuroshio anticyclonic anomalies.During the early winter of El Niño years,anticyclonic circulation anomalies appear both over the Philippine Sea and Kuroshio region,enhancing water vapor transport to the entirety of eastern China,thus contributing to more precipitation there.During the late winter of El Niño years,the anticyclone over the Philippine Sea is further strengthened,while the one over the Kuroshio dissipates,which could result in differing water vapor transport between northern and southern parts of eastern China and thus a dipole precipitation distribution.Roughly the opposite anomalies of circulation and precipitation are displayed during La Niña winters.Further analysis suggests that the seasonally-varying Kuroshio anticyclonic anomalies are possibly related to the enhancement of ENSO-related tropical central-eastern Pacific convection from early to late winter.These results have important implications for the seasonal-tointerannual predictability of winter precipitation over eastern China.展开更多
Climate change affects the activity of global and regional tropical cyclones(TCs).Among all TCs,typical super typhoons(STYs)are particularly devastating because they maintain their intensity when landing on the coast ...Climate change affects the activity of global and regional tropical cyclones(TCs).Among all TCs,typical super typhoons(STYs)are particularly devastating because they maintain their intensity when landing on the coast and thus cause casualties,economic losses,and environmental damage.Using a 3D tidal model,we reconstructed the typhoon(TY)wind field to simulate the storm surge induced by typical STYs.The TY activity was then analyzed using historical data.Results showed a downtrend of varying degrees in the annual frequency of STYs and TCs in the Western North Pacific(WNP)Basin,with a significant trend change observed for TCs from 1949 to 2021.A large difference in the interannual change in frequency was found between STYs and TCs in the WNP and Eastern China Sea(ECS).Along the coast of EC,the frequency of landfall TCs showed a weak downtrend,and the typical STYs showed reverse micro growth with peak activity in August.Zhejiang,Fujian,and Taiwan were highly vulnerable to the frontal hits of typical STYs.Affected by climate change,the average lifetime maximum intensity(LMI)locations and landfall locations of typical STYs in the ECS basin showed a significant poleward migration trend.In addition,the annual average LMI and accumulated cyclone energy showed an uptrend,indicating the increasing severity of the disaster risk.Affected by the typical STY activity in the ECS,the maximum storm surge area also showed poleward migration,and the coast of North China faced potential growth in high storm surge risks.展开更多
Under global warming,understanding the long-term variation in different types of heatwaves is vital for China’s preparedness against escalating heat stress.This study investigates dry and wet heatwave shifts in easte...Under global warming,understanding the long-term variation in different types of heatwaves is vital for China’s preparedness against escalating heat stress.This study investigates dry and wet heatwave shifts in eastern China over recent decades.Spatial trend analysis displays pronounced warming in inland midlatitudes and the Yangtze River Valley,with increased humidity in coastal regions.EOF results indicate intensifying dry heatwaves in northern China,while the Yangtze River Valley sees more frequent dry heatwaves.On the other hand,Indochina and regions north of 25°N also experience intensified wet heatwaves,corresponding to regional humidity increases.Composite analysis is conducted based on different situations:strong,frequent dry or wet heatwaves.Strong dry heatwaves are influenced by anticyclonic circulations over northern China,accompanied by warming SST anomalies around the coastal midlatitudes of the western North Pacific(WNP).Frequent dry heatwaves are related to strong subsidence along with a strengthened subtropical high over the WNP.Strong and frequent wet heatwaves show an intensified Okhotsk high at higher latitudes in the lower troposphere,and a negative circumglobal teleconnection wave train pattern in the upper troposphere.Decaying El Niño SST patterns are observed in two kinds of wet heatwave and frequent dry heatwave years.Risk analysis indicates that El Niño events heighten the likelihood of these heatwaves in regions most at risk.As global warming continues,adapting and implementing mitigation strategies toward extreme heatwaves becomes crucial,especially for the aforementioned regions under significant heat stress.展开更多
Seasonal prediction of summer precipitation over eastern China is closely linked to the East Asian monsoon circulation,which is largely affected by the El Niño-Southern Oscillation(ENSO).In this study,results sho...Seasonal prediction of summer precipitation over eastern China is closely linked to the East Asian monsoon circulation,which is largely affected by the El Niño-Southern Oscillation(ENSO).In this study,results show that spring soil moisture(SM)over the Indo-China peninsula(ICP)could be a reliable seasonal predictor for eastern China summer precipitation under non-ENSO conditions.When springtime SM anomalies are present over the ICP,they trigger a structured response in summertime precipitation over most of eastern China.The resultant south-to-north,tri-polar configuration of precipitation anomalies has a tendency to yield increased(decreased)precipitation in the Yangtze River basin and decreased(increased)in South and North China with a drier(wetter)spring soil condition in the ICP.The analyses show that ENSO exerts a powerful control on the East Asian circulation system in the ENSO-decaying summer.In the case of ENSO forcing,the seasonal predictability of the ICP spring SM for eastern China summer precipitation is suppressed.However,in the absence of the influence of ENSO sea surface temperature anomalies from the preceding winter,the SM anomalies over the ICP induce abnormal local heating and a consequent geopotential height response owing to its sustained control on local temperature,which could,in turn,lead to abnormal eastern China summer precipitation by affecting the East Asian summer monsoon circulation.The present findings provide a better understanding of the complexity of summer climate predictability over eastern China,which is of potential significance for improving the livelihood of the people.展开更多
The part of China,east of the Hu Huanyong Line,is commonly referred to as eastern China.It is characterized by a high population density and a well-developed economy;it also has huge energy demands.This study assesses...The part of China,east of the Hu Huanyong Line,is commonly referred to as eastern China.It is characterized by a high population density and a well-developed economy;it also has huge energy demands.This study assesses and promotes the large-scale development of geothermal resources in eastern China by analyzing deep geological structures,geothermal regimes,and typical geothermal systems.These analyses are based on data collected from geotectology,deep geophysics,geothermics,structural geology,and petrology.Determining the distribution patterns of intermediate-to-deep geothermal resources in the region helps develop prospects for their exploitation and utilization.Eastern China hosts superimposed layers of rocks from three major,global tectonic domainsd namely Paleo-Asian,Circum-Pacific,and Tethyan rocks.The structure of its crust and mantle exhibits a special flyover pattern,with basins and mountains as well as well-spaced uplifts and depressions alternatively on top.The lithosphere in Northeast China and North China is characterized by a thin,low density crust and mantle,whereas the lithosphere in South China has a thin,low density crust and a thick,high density mantle.The middle and upper crust contain geobodies with high conductivity and low velocity,with varying degrees of development that create favorable conditions for the formation and enrichment of geothermal resources.Moderate-to-high temperature geothermal resources are distributed in the MesozoiceCenozoic basins in eastern China,although moderate temperature geothermal resources with low abundance dominate.Porous sandstone reservoirs,karstified fractured-vuggy carbonate reservoirs,and fissured granite reservoirs are the main types of geothermal reservoirs in this region.Under the currently available technical conditions,the exploitation and utilization of geothermal resources in eastern China favor direct utilization over large-scale geothermal power generation.In Northeast China and North China,geothermal resources could be applied for large-scale geothermal heating purposes;geothermal heating could be applied during winter along parts of the Yangtze River while geothermal cooling would be more suitable for summer there;geothermal cooling could also be applied to much of South China.Geothermal resources can also be applied to high value-added industries,to aid agricultural practices,and for tourism.展开更多
In this paper ecogeographical characteristics of forest soil animal i n mountainous districts of the eastern China was analyzed, and results show that soil fauna was very rich in diversified forest habitat, moreover,...In this paper ecogeographical characteristics of forest soil animal i n mountainous districts of the eastern China was analyzed, and results show that soil fauna was very rich in diversified forest habitat, moreover, as times and spaces varied, their compositions and abundance changed obviously too. Forest so il animal decreased gradually in taxa and individual number from the tropics to cold-temperature zone, and they are higher in zonal forest habitat than in other ones on the same mountain. Forest soil animal also got gradually less with incr easing of depth in soil layer, and distributed principally in surface layer. The activities of human had strong affection on faunal composition and diversity of soil animal. On the tropics and subtropics mountains, forest soil animal are le ss in spring-summer than in autumn-winter, whereas they are more in summer-autum n than in winter-spring from warm-temperate zone to cold-temperate zone.展开更多
The monthly observed average precipitation data of 160 meteorological stations in China from 1960 to 2007,had been reorganized by the China Meteorological Administration.By employing that precipitation data,NCEP/NCAR ...The monthly observed average precipitation data of 160 meteorological stations in China from 1960 to 2007,had been reorganized by the China Meteorological Administration.By employing that precipitation data,NCEP/NCAR reanalysis data and the index of intensity of western Pacific subtropical high,the seasonal variations of subtropical high and precipitation in eastern China during the past decades are discussed.The relationships between them also are discussed by correlation and composite analyses.The results show that the intensity of subtropical high,which has significantly strengthened in the recent 50 years,especially in spring,autumn and winter,has notable impact on the simultaneous rainfall in the eastern region of China for all seasons,especially in winter.展开更多
Temporal and spatial response characteristics of vegetation NDVI to the variation of temperature and precipitation in the whole year, spring, summer and autumn was analyzed from April 1998 to March 2008 based on the S...Temporal and spatial response characteristics of vegetation NDVI to the variation of temperature and precipitation in the whole year, spring, summer and autumn was analyzed from April 1998 to March 2008 based on the SPOT VGT-NDVI data and daily temperature and precipitation data from 205 meteorological stations in eastern China. The results indicate that as a whole, the response of vegetation NDVI to the variation of temperature is more pronounced than that of precipitation in eastern China. Vegetation NDVI maximally responds to the variation of temperature with a lag of about 10 days, and it maximally responds to the variation of precipitation with a lag of about 30 days. The response of vegetation NDVI to temperature and precipitation is most pronounced in autumn, and has the longest lag in summer. Spatially, the maximum response of vegetation NDVI to the variation of temperature is more pronounced in the northern and middle parts than in the southern part of eastern China. The maximum response of vegetation NDVI to the variation of precipitation is more pronounced in the northern part than in the middle and southern parts of eastern China. The response of vegetation NDVI to the variation of temperature has longer lag in the northern and southern parts than in the middle part of eastern China. The response of vegetation NDVl to the variation of precipitation has the longest lag in the southern part, and the shortest lag in the northern part of eastern China. The response of vegetation NDVI to the variation of temperature and precipitation in eastern China is mainly consistent with other results, but the lag time of vegetation NDVI to the variation of temperature and precipitation has some differences with those results of the monsoon region of eastern China.展开更多
The climatic features associated with the eastern China summer rainfalls (ECSR) are examined in the National Center for Atmospheric Research (NCAR) Community Climate Model Version 3 (CCM3) of the United States of Amer...The climatic features associated with the eastern China summer rainfalls (ECSR) are examined in the National Center for Atmospheric Research (NCAR) Community Climate Model Version 3 (CCM3) of the United States of America, and run with time-evolving sea surface temperature (SST) from September 1978 to August 1993. The CCM3 is shown to capture the salient seasonal features of ECSR. As many other climate models, however, there are some unrealistic projections of ECSR in the CCM3. The most unacceptable one is the erroneously intensified precipitation center on the east periphery of the Tibetan Plateau and its northeastward extension. The artificial strong rainfall center is fairly assessed by comparing with the products of the station rainfall data, Xie and Arkin (1996) rainfall data and the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (Gibson et al., 1997). The physical processes involved in the formation of the rainfall center are discussed. The preliminary conclusion reveals that it is the overestimated sensible heating over and around the Tibetan Plateau in the CCM3 that causes the heavy rainfall. The unreal strong surface sensible heating over the southeast and northeast of Tibetan Plateau favors the forming of a powerful subtropical anticyclone over the eastern China. The fake enclosed subtropical anticyclone center makes the moist southwest wind fasten on the east periphery of the Tibetan Plateau and extend to its northeast. In the southeast coast of China, locating on the southeast side of the subtropical anticyclone, the southwest monsoon is decreased and even replaced by northeast wind in some cases. In the CCM3, therefore, the precipitation is exaggerated on the east periphery of the Tibetan Plateau and its northeast extension and is underestimated in the southeast coast of China. Key words Eastern China summer rainfall - Model validation - Subtropical anticyclone - Diabatic heating This study was sponsored by Chinese Academy of Sciences under grant “ Hundred Talents” for “ Validation of Coupled Climate models” and the National Natural Science Foundation of China (Grant No.49823002), and IAP innovation fund (No. 8-1204).展开更多
Based on K-Ar isotope analyses, Mesozoic mafic (and alkali ultramafic) dikes from western and eastern Shandong Province, China, are dated at 88.2±1.70 Ma to 169.5±3.7 Ma with the majority of ages ranging fro...Based on K-Ar isotope analyses, Mesozoic mafic (and alkali ultramafic) dikes from western and eastern Shandong Province, China, are dated at 88.2±1.70 Ma to 169.5±3.7 Ma with the majority of ages ranging from 90 Ma to 140 Ma. The emplacement of the dikes suggests a major Yanshanian (Cretaceous) crustal extension in Shandong province. Together with other available age data, this study suggests four periods of crustal extension at about 80 Ma, 100 Ma, 120 Ma and 140 Ma, respectively. Besides the effect of collapse of the Yanshanian orogenic belt on the emplacement of the mafic dikes in Shandong in the Cretaceous, the mantle plume and the extensive left-lateral advection and extension of the Tanlu fault also have controlled the crustal extension and the emplacement of the mafic dikes in eastern Shandong and western Shandong, respectively.展开更多
ENSO's effect on the rainfall in eastern China in the following early summer is investigated by using station precipitation data and the ERA-40 reanalysis data from 1958 to 2002. In June, after the E1 Nifio peak, the...ENSO's effect on the rainfall in eastern China in the following early summer is investigated by using station precipitation data and the ERA-40 reanalysis data from 1958 to 2002. In June, after the E1 Nifio peak, the precipitation is significantly enhanced in the Yangtze River valley while suppressed in the Huaihe River-Yellow River valleys. This relationship between ENSO and the rainfall in eastern China is established possibly through two teleconnections: One is related to the western North Pacific (WNP) anticyclonic anomaly in the lower troposphere leading to enhanced precipitation in the Yangtze River valley, and the other is related to the southward displacement of the Asian jet stream (AJS) in the upper troposphere resulting in suppressed precipitation in the Huaihe River-Yellow River valleys. This southward displacement of the AJS is one part of ENSO's effect on the zonal flow in the whole Northern Hemisphere. After the E1 Nifio peak, the ENSO-related warming in the tropical troposphere persists into the following early summer, increasing the meridional temperature gradient and through the thermal wind balance, leads to the enhancement of westerly flow in the subtropics south of the westerly jet stream and results in a southward displacement of the westerly jet stream.展开更多
The stretching process of some Tertiary rift basins in eastern China is characterized by multiphase rifting. A multiple instantaneous uniform stretching model is proposed in this paper to simulate the formation of the...The stretching process of some Tertiary rift basins in eastern China is characterized by multiphase rifting. A multiple instantaneous uniform stretching model is proposed in this paper to simulate the formation of the basins as the rifting process cannot be accurately described by a simple (one episode) stretching model. The study shows that the multiphase stretching model, combined with the back-stripping technique, can be used to reconstruct the subsidence history and the stretching process of the lithosphere, and to evaluate the depth to the top of the asthenosphere and the deep thermal evolution of the basins. The calculated results obtained by applying the quantitative model to the episodic rifting process of the Tertiary Qiongdongnan and Yinggehai basins in the South China Sea are in agreement with geophysical data and geological observations. This provides a new method for quantitative evaluation of the geodynamic process of multiphase rifting occurring during the Tertiary in eastern China.展开更多
The composition of gases trapped in olivine, orthopyroxene and clinopyroxene in Iherzolite xenoliths collected from different locations in eastern China has been measured by the vacuum stepped-heating mass spectrometr...The composition of gases trapped in olivine, orthopyroxene and clinopyroxene in Iherzolite xenoliths collected from different locations in eastern China has been measured by the vacuum stepped-heating mass spectrometry. These xenoliths are hosted in alkali basalts and considered as residues of partial melting of the upper mantle, and may contain evidence of mantle evolution. The results show that various kinds of fluid inclusions in Iherzolite xenoliths have been released at distinct times, which could be related to different stages of mantle evolution. In general, primitive fluids of the upper mantle (PFUM) beneath eastern China are dominated by H2, CO2 and CO, and are characterized by high contents of H2 and reduced gases. The compositions of PFUM are highly variable and related to tectonic settings. CO, CO2 and H2 are the main components of the PFUM beneath cratons; the PFUM in the mantle enriched in potassic metasomatism in the northern part of northeastern China has a high content of H2, while CO2 and SO2 are the dominant components of the PFUM in the Su-Lu-Wan (Jiangsu-Shandong-Anhui) region, where recycled crustal fluids were mixed with deeper mantle components. There are several fluids with distinct compositions beneath eastern China, such as primitive fluids of upper mantle (CO, CO2 and H2), partial melting fluids (CO2 and CO) and metasomatic fluids mixed with recycled crustal fluids (CO2, N2, SO2 and CH4) etc. Fluids of the upper mantle beneath the North China craton are different from that of the South China craton in total gases and chemical compositions: the contents of the reduced gases of the PFUM in the NCC are higher than those in the SCC.展开更多
The sensitivity of the East Asian summer monsoon to soil moisture anomalies over China was investigated based on ensembles of seasonal simulations (March-September) using the NCEP GCM coupled with the Simplified Sim...The sensitivity of the East Asian summer monsoon to soil moisture anomalies over China was investigated based on ensembles of seasonal simulations (March-September) using the NCEP GCM coupled with the Simplified Simple Biosphere Model (NCEP GCM/SSiB). After a control experiment with free-running soil moisture, two ensembles were performed in which the soil moisture over the vast region from the lower and middle reaches of the Yangtze River valley to North China (YRNC) was double and half that in the control, with the maximum less than the field capacity. The simulation results showed significant sensitivity of the East Asian summer monsoon to wet soil in YRNC. The wetter soil was associated with increased surface latent heat flux and reduced surface sensible heat flux. In turn, these changes resulted in a wetter and colder local land surface and reduced land-sea temperature gradients, corresponding to a weakened East Asian monsoon circulation in an anomalous anticyclone over southeastern China, and a strengthened East Asian trough southward over Northeast China. Consequently, less precipitation appeared over southeastern China and North China and more rainfall over Northeast China. The weakened monsoon circulation and strengthened East Asian trough was accompanied by the convergence of abnormal northerly and southerly flow over the Yangtze River valley, resulting in more rainfall in this region. In the drier soil experiments, less precipitation appeared over YRNC. The East Asian monsoon circulation seems to show little sensitivity to dry soil anomalies in NCEP GCM/SSiB.展开更多
The shoshonite province in eastern China is characterized by extensive distribution (ca. 80000 km2) of Late Jurassic-Early Cretaceous (165-100 Ma) shoshonite series with subordinate high-K calc-alkali series. It was f...The shoshonite province in eastern China is characterized by extensive distribution (ca. 80000 km2) of Late Jurassic-Early Cretaceous (165-100 Ma) shoshonite series with subordinate high-K calc-alkali series. It was formed in a dominantly tensile stress field. In comparison with their analogues in island arcs and active continental margins in other countries, the volcanic rocks in the shoshonite province have their specific characteristics in petrology, mineralogy and geochemistry as well as related mineralization association, which are the comprehensive reflection of the special composition and structure of the mantle and crust of the province and the special Mesozoic regional tectonic setting.展开更多
Based on the simulations of cloud features in February 2001 by the regional numerical weather prediction model-Advanced Regional Eta-coordinate Model (AREM), the dynamic and thermodynamic conditions for middle cloud f...Based on the simulations of cloud features in February 2001 by the regional numerical weather prediction model-Advanced Regional Eta-coordinate Model (AREM), the dynamic and thermodynamic conditions for middle cloud formation over eastern China are studied. Diagnostic analysis partly confirms the previous suggestion that the middle stratiform clouds downstream of the Tibetaan Plateau are maintained by the frictional and blocking effects of the plateau. In addition, it is found that the temperature inversion at plateau height over eastern China generated by the warm air advected from the plateau provides a favorable thermodynamic condition for middle clouds. Both diurnal variations of the mid-level divergence and the inversion over eastern China, which are determined by the atmospheric boundary activity over the Tibetan Plateau, dominate the cloud diurnal cycle. The middle cloud amount decreases and the cloud top falls in the daytime, but reverses at night. The comparison of cloud features between the simulations and the observations also proves that the AREM can well capture the distinctive continental stratiform cloud features downstream of the Tibetan Plateau.展开更多
基金National Key Research and Development Program of China (2021YFC3000802)National Natural Science Foundation of China (41875059)The Open Research Program of the State Key Laboratory of Severe Weather (2021LASW-A04)。
文摘This study examines the spatio-temporal characteristics of heavy precipitation forecasts in eastern China from the European Centre for Medium-Range Weather Forecasts(ECMWF) using the time-domain version of the Method for Object-based Diagnostic Evaluation(MODE-TD). A total of 23 heavy rainfall cases occurring between 2018 and 2021 are selected for analysis. Using Typhoon “Rumbia” as a case study, the paper illustrates how the MODE-TD method assesses the overall simulation capability of models for the life history of precipitation systems. The results of multiple tests with different parameter configurations reveal that the model underestimates the number of objects’ forecasted precipitation tracks, particularly at smaller radii. Additionally, the analysis based on centroid offset and area ratio tests for different classified precipitation objects indicates that the model performs better in predicting large-area, fast-moving, and longlifespan precipitation objects. Conversely, it tends to have less accurate predictions for small-area, slow-moving, and shortlifespan precipitation objects. In terms of temporal characteristics, the model overestimates the forecasted movement speed for precipitation objects with small-area, slow movement, or both long and short lifespans while underestimating it for precipitation with fast movement. In terms of temporal characteristics, the model tends to overestimate the forecasted movement speed for precipitation objects with small-area, slow movement, or both long and short lifespans while underestimating it for precipitation with fast movement. Overall, the model provides more accurate predictions for the duration and dissipation of precipitation objects with large-area or long-lifespan(such as typhoon precipitation) while having large prediction errors for precipitation objects with small-area or short-lifespan. Furthermore, the model’s simulation results regarding the generation of precipitation objects show that it performs relatively well in simulating the generation of large-area and fast-moving precipitation objects. However, there are significant differences in the forecasted generation of small-area and slow-moving precipitation objects after 9 hours.
基金supported by the National Key R&D Program of China (2022YFF0801602)the High-Performance Computing Center of Nanjing University of Information Science and Technology for their support of this work
文摘Winter precipitation over eastern China displays remarkable interannual variability,which has been suggested to be closely related to El Niño-Southern Oscillation(ENSO).This study finds that ENSO impacts on eastern China precipitation patterns exhibit obvious differences in early(November-December)and late(January-February)winter.In early winter,precipitation anomalies associated with ENSO are characterized by a monopole spatial distribution over eastern China.In contrast,the precipitation anomaly pattern in late winter remarkably changes,manifesting as a dipole spatial distribution.The noteworthy change in precipitation responses from early to late winter can be largely attributed to the seasonally varying Kuroshio anticyclonic anomalies.During the early winter of El Niño years,anticyclonic circulation anomalies appear both over the Philippine Sea and Kuroshio region,enhancing water vapor transport to the entirety of eastern China,thus contributing to more precipitation there.During the late winter of El Niño years,the anticyclone over the Philippine Sea is further strengthened,while the one over the Kuroshio dissipates,which could result in differing water vapor transport between northern and southern parts of eastern China and thus a dipole precipitation distribution.Roughly the opposite anomalies of circulation and precipitation are displayed during La Niña winters.Further analysis suggests that the seasonally-varying Kuroshio anticyclonic anomalies are possibly related to the enhancement of ENSO-related tropical central-eastern Pacific convection from early to late winter.These results have important implications for the seasonal-tointerannual predictability of winter precipitation over eastern China.
基金supported by four funds,including the National Key Research and Development Program of China(No.2022YFC3106102)the Marine Science and Technology Innovation Project of Jiangsu Province(Nos.JSZRH YKJ202105,JSZRHYKI202303)+1 种基金the Nantong Social and Livelihood Science and Technology Project(Nos.MS12022009,MS22022082,MS22022083)the Project on Excellent Post-Graduate Dissertation of Hohai University(No.422003470).
文摘Climate change affects the activity of global and regional tropical cyclones(TCs).Among all TCs,typical super typhoons(STYs)are particularly devastating because they maintain their intensity when landing on the coast and thus cause casualties,economic losses,and environmental damage.Using a 3D tidal model,we reconstructed the typhoon(TY)wind field to simulate the storm surge induced by typical STYs.The TY activity was then analyzed using historical data.Results showed a downtrend of varying degrees in the annual frequency of STYs and TCs in the Western North Pacific(WNP)Basin,with a significant trend change observed for TCs from 1949 to 2021.A large difference in the interannual change in frequency was found between STYs and TCs in the WNP and Eastern China Sea(ECS).Along the coast of EC,the frequency of landfall TCs showed a weak downtrend,and the typical STYs showed reverse micro growth with peak activity in August.Zhejiang,Fujian,and Taiwan were highly vulnerable to the frontal hits of typical STYs.Affected by climate change,the average lifetime maximum intensity(LMI)locations and landfall locations of typical STYs in the ECS basin showed a significant poleward migration trend.In addition,the annual average LMI and accumulated cyclone energy showed an uptrend,indicating the increasing severity of the disaster risk.Affected by the typical STY activity in the ECS,the maximum storm surge area also showed poleward migration,and the coast of North China faced potential growth in high storm surge risks.
基金supported by the National Natural Science Foundation of China(Grant Nos.42120104001,42192563 and 42005010)the Hong Kong RGC General Research Fund 11300920.
文摘Under global warming,understanding the long-term variation in different types of heatwaves is vital for China’s preparedness against escalating heat stress.This study investigates dry and wet heatwave shifts in eastern China over recent decades.Spatial trend analysis displays pronounced warming in inland midlatitudes and the Yangtze River Valley,with increased humidity in coastal regions.EOF results indicate intensifying dry heatwaves in northern China,while the Yangtze River Valley sees more frequent dry heatwaves.On the other hand,Indochina and regions north of 25°N also experience intensified wet heatwaves,corresponding to regional humidity increases.Composite analysis is conducted based on different situations:strong,frequent dry or wet heatwaves.Strong dry heatwaves are influenced by anticyclonic circulations over northern China,accompanied by warming SST anomalies around the coastal midlatitudes of the western North Pacific(WNP).Frequent dry heatwaves are related to strong subsidence along with a strengthened subtropical high over the WNP.Strong and frequent wet heatwaves show an intensified Okhotsk high at higher latitudes in the lower troposphere,and a negative circumglobal teleconnection wave train pattern in the upper troposphere.Decaying El Niño SST patterns are observed in two kinds of wet heatwave and frequent dry heatwave years.Risk analysis indicates that El Niño events heighten the likelihood of these heatwaves in regions most at risk.As global warming continues,adapting and implementing mitigation strategies toward extreme heatwaves becomes crucial,especially for the aforementioned regions under significant heat stress.
基金supported by the National Natural Science Foundation of China[grant number 42088101] and the National Natural Science Foundation of China[grant number 42005020].
基金supported by the National Key Technologies R&D Program of China[grant number 2022YFC3002803]the National Science Fund for Distinguished Young Scholars[grant number 41925021].
基金supported by the National Natural Science Foundation of China (Grant No. 41831175)the Fundamental Research Funds for the Central Universities (Grant No. B210201029)+2 种基金the Key Scientific and Technological Project of the Ministry of Water Resources, P. R. China (SKS2022001)the Joint Open Project of the KLME and CIC-FEMD (Grant No. KLME202202)the Open Research Fund of the State Key Laboratory of Tropical Oceanography (South China Sea Institute of Oceanology, Chinese Academy of Sciences) (Grant No. LTO2110)
文摘Seasonal prediction of summer precipitation over eastern China is closely linked to the East Asian monsoon circulation,which is largely affected by the El Niño-Southern Oscillation(ENSO).In this study,results show that spring soil moisture(SM)over the Indo-China peninsula(ICP)could be a reliable seasonal predictor for eastern China summer precipitation under non-ENSO conditions.When springtime SM anomalies are present over the ICP,they trigger a structured response in summertime precipitation over most of eastern China.The resultant south-to-north,tri-polar configuration of precipitation anomalies has a tendency to yield increased(decreased)precipitation in the Yangtze River basin and decreased(increased)in South and North China with a drier(wetter)spring soil condition in the ICP.The analyses show that ENSO exerts a powerful control on the East Asian circulation system in the ENSO-decaying summer.In the case of ENSO forcing,the seasonal predictability of the ICP spring SM for eastern China summer precipitation is suppressed.However,in the absence of the influence of ENSO sea surface temperature anomalies from the preceding winter,the SM anomalies over the ICP induce abnormal local heating and a consequent geopotential height response owing to its sustained control on local temperature,which could,in turn,lead to abnormal eastern China summer precipitation by affecting the East Asian summer monsoon circulation.The present findings provide a better understanding of the complexity of summer climate predictability over eastern China,which is of potential significance for improving the livelihood of the people.
基金This work was funded by a number of scientific research programs,including grants from the National Key Research and Development Program of China,titled‘Evaluation and Optimal Target Selection of Deep Geothermal Resources in the Igneous Province in South China’(Project No.2019YFC0604903)‘Analysis and Geothermal Reservoir Stimulation Methods of Deep High-temperature Geothermal Systems in East China’(Project No.2021YFA0716004)+2 种基金a grant from the Joint Fund Program of the National Natural Science Foundation of China and Sinopec,titled‘Deep Geological Processes and Resource Effects of Basins’(Project No.U20B6001)two grants from the Sinopec Science and Technology Research Program,titled'Single well evaluation of Well Fushenre 1 and study on the potential of deep geothermal resources in Hainan'(Project No.P23131)‘Siting and Target Evaluation of Deep Geothermal Resources in Key Areas of Southeastern China’(Project No.P20041-1).
文摘The part of China,east of the Hu Huanyong Line,is commonly referred to as eastern China.It is characterized by a high population density and a well-developed economy;it also has huge energy demands.This study assesses and promotes the large-scale development of geothermal resources in eastern China by analyzing deep geological structures,geothermal regimes,and typical geothermal systems.These analyses are based on data collected from geotectology,deep geophysics,geothermics,structural geology,and petrology.Determining the distribution patterns of intermediate-to-deep geothermal resources in the region helps develop prospects for their exploitation and utilization.Eastern China hosts superimposed layers of rocks from three major,global tectonic domainsd namely Paleo-Asian,Circum-Pacific,and Tethyan rocks.The structure of its crust and mantle exhibits a special flyover pattern,with basins and mountains as well as well-spaced uplifts and depressions alternatively on top.The lithosphere in Northeast China and North China is characterized by a thin,low density crust and mantle,whereas the lithosphere in South China has a thin,low density crust and a thick,high density mantle.The middle and upper crust contain geobodies with high conductivity and low velocity,with varying degrees of development that create favorable conditions for the formation and enrichment of geothermal resources.Moderate-to-high temperature geothermal resources are distributed in the MesozoiceCenozoic basins in eastern China,although moderate temperature geothermal resources with low abundance dominate.Porous sandstone reservoirs,karstified fractured-vuggy carbonate reservoirs,and fissured granite reservoirs are the main types of geothermal reservoirs in this region.Under the currently available technical conditions,the exploitation and utilization of geothermal resources in eastern China favor direct utilization over large-scale geothermal power generation.In Northeast China and North China,geothermal resources could be applied for large-scale geothermal heating purposes;geothermal heating could be applied during winter along parts of the Yangtze River while geothermal cooling would be more suitable for summer there;geothermal cooling could also be applied to much of South China.Geothermal resources can also be applied to high value-added industries,to aid agricultural practices,and for tourism.
基金jointly supported by the National Key Research and Development Program of China [grant numbers 2020YFA0608901 and 2019YFC1510004]the National Natural Science Foundation of China[grant number 42005020]+1 种基金the Natural Science Foundation of Jiangsu[grant number BK20190781]the Postgraduate Research&Practice Innovation Program of Jiangsu Province [grant number KYCX21_0964]
文摘In this paper ecogeographical characteristics of forest soil animal i n mountainous districts of the eastern China was analyzed, and results show that soil fauna was very rich in diversified forest habitat, moreover, as times and spaces varied, their compositions and abundance changed obviously too. Forest so il animal decreased gradually in taxa and individual number from the tropics to cold-temperature zone, and they are higher in zonal forest habitat than in other ones on the same mountain. Forest soil animal also got gradually less with incr easing of depth in soil layer, and distributed principally in surface layer. The activities of human had strong affection on faunal composition and diversity of soil animal. On the tropics and subtropics mountains, forest soil animal are le ss in spring-summer than in autumn-winter, whereas they are more in summer-autum n than in winter-spring from warm-temperate zone to cold-temperate zone.
基金Supported by Projects Funded by Scientific Research Special Fund for Public Welfare Industry (GYHY20076029)
文摘The monthly observed average precipitation data of 160 meteorological stations in China from 1960 to 2007,had been reorganized by the China Meteorological Administration.By employing that precipitation data,NCEP/NCAR reanalysis data and the index of intensity of western Pacific subtropical high,the seasonal variations of subtropical high and precipitation in eastern China during the past decades are discussed.The relationships between them also are discussed by correlation and composite analyses.The results show that the intensity of subtropical high,which has significantly strengthened in the recent 50 years,especially in spring,autumn and winter,has notable impact on the simultaneous rainfall in the eastern region of China for all seasons,especially in winter.
基金National Natural Science Foundation of China, No.40901031 Shanghai Natural Science Foundation, No.09ZR1428800+3 种基金 National Key Project of Scientific and Technical Supporting Programs, No.2007BAC29B05 Special Project of Research-style Operation in Shanghai Meteorological Bureau, No.YJ200803 No.YJ200805 National 863 Program, No.2006AA12Z104
文摘Temporal and spatial response characteristics of vegetation NDVI to the variation of temperature and precipitation in the whole year, spring, summer and autumn was analyzed from April 1998 to March 2008 based on the SPOT VGT-NDVI data and daily temperature and precipitation data from 205 meteorological stations in eastern China. The results indicate that as a whole, the response of vegetation NDVI to the variation of temperature is more pronounced than that of precipitation in eastern China. Vegetation NDVI maximally responds to the variation of temperature with a lag of about 10 days, and it maximally responds to the variation of precipitation with a lag of about 30 days. The response of vegetation NDVI to temperature and precipitation is most pronounced in autumn, and has the longest lag in summer. Spatially, the maximum response of vegetation NDVI to the variation of temperature is more pronounced in the northern and middle parts than in the southern part of eastern China. The maximum response of vegetation NDVI to the variation of precipitation is more pronounced in the northern part than in the middle and southern parts of eastern China. The response of vegetation NDVI to the variation of temperature has longer lag in the northern and southern parts than in the middle part of eastern China. The response of vegetation NDVl to the variation of precipitation has the longest lag in the southern part, and the shortest lag in the northern part of eastern China. The response of vegetation NDVI to the variation of temperature and precipitation in eastern China is mainly consistent with other results, but the lag time of vegetation NDVI to the variation of temperature and precipitation has some differences with those results of the monsoon region of eastern China.
基金This study was sponsored by Chinese Academy of Sciences under grant " Hundred Talents" for " Validation of Coupled Climate model
文摘The climatic features associated with the eastern China summer rainfalls (ECSR) are examined in the National Center for Atmospheric Research (NCAR) Community Climate Model Version 3 (CCM3) of the United States of America, and run with time-evolving sea surface temperature (SST) from September 1978 to August 1993. The CCM3 is shown to capture the salient seasonal features of ECSR. As many other climate models, however, there are some unrealistic projections of ECSR in the CCM3. The most unacceptable one is the erroneously intensified precipitation center on the east periphery of the Tibetan Plateau and its northeastward extension. The artificial strong rainfall center is fairly assessed by comparing with the products of the station rainfall data, Xie and Arkin (1996) rainfall data and the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (Gibson et al., 1997). The physical processes involved in the formation of the rainfall center are discussed. The preliminary conclusion reveals that it is the overestimated sensible heating over and around the Tibetan Plateau in the CCM3 that causes the heavy rainfall. The unreal strong surface sensible heating over the southeast and northeast of Tibetan Plateau favors the forming of a powerful subtropical anticyclone over the eastern China. The fake enclosed subtropical anticyclone center makes the moist southwest wind fasten on the east periphery of the Tibetan Plateau and extend to its northeast. In the southeast coast of China, locating on the southeast side of the subtropical anticyclone, the southwest monsoon is decreased and even replaced by northeast wind in some cases. In the CCM3, therefore, the precipitation is exaggerated on the east periphery of the Tibetan Plateau and its northeast extension and is underestimated in the southeast coast of China. Key words Eastern China summer rainfall - Model validation - Subtropical anticyclone - Diabatic heating This study was sponsored by Chinese Academy of Sciences under grant “ Hundred Talents” for “ Validation of Coupled Climate models” and the National Natural Science Foundation of China (Grant No.49823002), and IAP innovation fund (No. 8-1204).
文摘Based on K-Ar isotope analyses, Mesozoic mafic (and alkali ultramafic) dikes from western and eastern Shandong Province, China, are dated at 88.2±1.70 Ma to 169.5±3.7 Ma with the majority of ages ranging from 90 Ma to 140 Ma. The emplacement of the dikes suggests a major Yanshanian (Cretaceous) crustal extension in Shandong province. Together with other available age data, this study suggests four periods of crustal extension at about 80 Ma, 100 Ma, 120 Ma and 140 Ma, respectively. Besides the effect of collapse of the Yanshanian orogenic belt on the emplacement of the mafic dikes in Shandong in the Cretaceous, the mantle plume and the extensive left-lateral advection and extension of the Tanlu fault also have controlled the crustal extension and the emplacement of the mafic dikes in eastern Shandong and western Shandong, respectively.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40725016 and 40221503).
文摘ENSO's effect on the rainfall in eastern China in the following early summer is investigated by using station precipitation data and the ERA-40 reanalysis data from 1958 to 2002. In June, after the E1 Nifio peak, the precipitation is significantly enhanced in the Yangtze River valley while suppressed in the Huaihe River-Yellow River valleys. This relationship between ENSO and the rainfall in eastern China is established possibly through two teleconnections: One is related to the western North Pacific (WNP) anticyclonic anomaly in the lower troposphere leading to enhanced precipitation in the Yangtze River valley, and the other is related to the southward displacement of the Asian jet stream (AJS) in the upper troposphere resulting in suppressed precipitation in the Huaihe River-Yellow River valleys. This southward displacement of the AJS is one part of ENSO's effect on the zonal flow in the whole Northern Hemisphere. After the E1 Nifio peak, the ENSO-related warming in the tropical troposphere persists into the following early summer, increasing the meridional temperature gradient and through the thermal wind balance, leads to the enhancement of westerly flow in the subtropics south of the westerly jet stream and results in a southward displacement of the westerly jet stream.
文摘The stretching process of some Tertiary rift basins in eastern China is characterized by multiphase rifting. A multiple instantaneous uniform stretching model is proposed in this paper to simulate the formation of the basins as the rifting process cannot be accurately described by a simple (one episode) stretching model. The study shows that the multiphase stretching model, combined with the back-stripping technique, can be used to reconstruct the subsidence history and the stretching process of the lithosphere, and to evaluate the depth to the top of the asthenosphere and the deep thermal evolution of the basins. The calculated results obtained by applying the quantitative model to the episodic rifting process of the Tertiary Qiongdongnan and Yinggehai basins in the South China Sea are in agreement with geophysical data and geological observations. This provides a new method for quantitative evaluation of the geodynamic process of multiphase rifting occurring during the Tertiary in eastern China.
基金the Natural Science Foundation of China(grant 40273009).
文摘The composition of gases trapped in olivine, orthopyroxene and clinopyroxene in Iherzolite xenoliths collected from different locations in eastern China has been measured by the vacuum stepped-heating mass spectrometry. These xenoliths are hosted in alkali basalts and considered as residues of partial melting of the upper mantle, and may contain evidence of mantle evolution. The results show that various kinds of fluid inclusions in Iherzolite xenoliths have been released at distinct times, which could be related to different stages of mantle evolution. In general, primitive fluids of the upper mantle (PFUM) beneath eastern China are dominated by H2, CO2 and CO, and are characterized by high contents of H2 and reduced gases. The compositions of PFUM are highly variable and related to tectonic settings. CO, CO2 and H2 are the main components of the PFUM beneath cratons; the PFUM in the mantle enriched in potassic metasomatism in the northern part of northeastern China has a high content of H2, while CO2 and SO2 are the dominant components of the PFUM in the Su-Lu-Wan (Jiangsu-Shandong-Anhui) region, where recycled crustal fluids were mixed with deeper mantle components. There are several fluids with distinct compositions beneath eastern China, such as primitive fluids of upper mantle (CO, CO2 and H2), partial melting fluids (CO2 and CO) and metasomatic fluids mixed with recycled crustal fluids (CO2, N2, SO2 and CH4) etc. Fluids of the upper mantle beneath the North China craton are different from that of the South China craton in total gases and chemical compositions: the contents of the reduced gases of the PFUM in the NCC are higher than those in the SCC.
基金jointly supported by the National Natural Science Foundation of China (Grant Nos. 41205059, 41221064 and 41375092)the Special Fund for Public Welfare Industry (Meteorology) (Grant No. GYHY201206017)
文摘The sensitivity of the East Asian summer monsoon to soil moisture anomalies over China was investigated based on ensembles of seasonal simulations (March-September) using the NCEP GCM coupled with the Simplified Simple Biosphere Model (NCEP GCM/SSiB). After a control experiment with free-running soil moisture, two ensembles were performed in which the soil moisture over the vast region from the lower and middle reaches of the Yangtze River valley to North China (YRNC) was double and half that in the control, with the maximum less than the field capacity. The simulation results showed significant sensitivity of the East Asian summer monsoon to wet soil in YRNC. The wetter soil was associated with increased surface latent heat flux and reduced surface sensible heat flux. In turn, these changes resulted in a wetter and colder local land surface and reduced land-sea temperature gradients, corresponding to a weakened East Asian monsoon circulation in an anomalous anticyclone over southeastern China, and a strengthened East Asian trough southward over Northeast China. Consequently, less precipitation appeared over southeastern China and North China and more rainfall over Northeast China. The weakened monsoon circulation and strengthened East Asian trough was accompanied by the convergence of abnormal northerly and southerly flow over the Yangtze River valley, resulting in more rainfall in this region. In the drier soil experiments, less precipitation appeared over YRNC. The East Asian monsoon circulation seems to show little sensitivity to dry soil anomalies in NCEP GCM/SSiB.
基金This research was supported by the National Natural Science Foundation of China Grant No. 9488010
文摘The shoshonite province in eastern China is characterized by extensive distribution (ca. 80000 km2) of Late Jurassic-Early Cretaceous (165-100 Ma) shoshonite series with subordinate high-K calc-alkali series. It was formed in a dominantly tensile stress field. In comparison with their analogues in island arcs and active continental margins in other countries, the volcanic rocks in the shoshonite province have their specific characteristics in petrology, mineralogy and geochemistry as well as related mineralization association, which are the comprehensive reflection of the special composition and structure of the mantle and crust of the province and the special Mesozoic regional tectonic setting.
基金This work was jointly supported by the National Key Basic Research and Development project of China under Grant No.2004CB418304the National Natural Science Foundation of China under Grant Nos.40233031 and 40221503.
文摘Based on the simulations of cloud features in February 2001 by the regional numerical weather prediction model-Advanced Regional Eta-coordinate Model (AREM), the dynamic and thermodynamic conditions for middle cloud formation over eastern China are studied. Diagnostic analysis partly confirms the previous suggestion that the middle stratiform clouds downstream of the Tibetaan Plateau are maintained by the frictional and blocking effects of the plateau. In addition, it is found that the temperature inversion at plateau height over eastern China generated by the warm air advected from the plateau provides a favorable thermodynamic condition for middle clouds. Both diurnal variations of the mid-level divergence and the inversion over eastern China, which are determined by the atmospheric boundary activity over the Tibetan Plateau, dominate the cloud diurnal cycle. The middle cloud amount decreases and the cloud top falls in the daytime, but reverses at night. The comparison of cloud features between the simulations and the observations also proves that the AREM can well capture the distinctive continental stratiform cloud features downstream of the Tibetan Plateau.