Climate change affects the activity of global and regional tropical cyclones(TCs).Among all TCs,typical super typhoons(STYs)are particularly devastating because they maintain their intensity when landing on the coast ...Climate change affects the activity of global and regional tropical cyclones(TCs).Among all TCs,typical super typhoons(STYs)are particularly devastating because they maintain their intensity when landing on the coast and thus cause casualties,economic losses,and environmental damage.Using a 3D tidal model,we reconstructed the typhoon(TY)wind field to simulate the storm surge induced by typical STYs.The TY activity was then analyzed using historical data.Results showed a downtrend of varying degrees in the annual frequency of STYs and TCs in the Western North Pacific(WNP)Basin,with a significant trend change observed for TCs from 1949 to 2021.A large difference in the interannual change in frequency was found between STYs and TCs in the WNP and Eastern China Sea(ECS).Along the coast of EC,the frequency of landfall TCs showed a weak downtrend,and the typical STYs showed reverse micro growth with peak activity in August.Zhejiang,Fujian,and Taiwan were highly vulnerable to the frontal hits of typical STYs.Affected by climate change,the average lifetime maximum intensity(LMI)locations and landfall locations of typical STYs in the ECS basin showed a significant poleward migration trend.In addition,the annual average LMI and accumulated cyclone energy showed an uptrend,indicating the increasing severity of the disaster risk.Affected by the typical STY activity in the ECS,the maximum storm surge area also showed poleward migration,and the coast of North China faced potential growth in high storm surge risks.展开更多
The geological-geophysical map series of the eastern China seas and adjacent region (1:1 000 000) will be published in the late half year of 2009. The regional tectonic map is one of the main professional maps. The...The geological-geophysical map series of the eastern China seas and adjacent region (1:1 000 000) will be published in the late half year of 2009. The regional tectonic map is one of the main professional maps. The Mapping methods, the division method of geological tectonic units and the main geological tectonic units are mainly discussed. The strata from Pliocene to Holocene are peeled off so as to display the Pre-Pliocene structures. In basins, isopaches are drawn for the Cenozoic deposits. The plate tectonic theory and present tectonic pattern are adopted as the priorities in tectonic division. As to the division of intraplate tectonic units, it is a revision, complement and improvement of previous dividing systems, and the nomenclature for each tectonic unit follows the current system in China. The first-order tectonic unit is plate (Pacific Plate, Eurasian Plate and Philippine Sea Plate). The second-order tectonic unit is tectonic domain (East Asian continental tectonic domain,East Asian continental margin tectonic domain and west Pacific tectonic domain). The Philippine Sea Plate and the west part of the Pacific Plate are called the West Pacific tectonic domain. The part of the Eurasian Plate involved in this study area can be further divided into East Asian continental tectonic domain and East Asian continental margin tectonic domain. The East Asian continental margin domain is composed of the Ryukyu island arc, the Okinawa Trough back-arc basin and the back-arc basin of Sea of Japan. The East Asian continental tectonic domain in this study area is composed of the Sino-Korea Massif, the Changjiang River (Yangtze) Massif and South China Massif. In turn, these massifs consist of basins, folded belts or uplift zones. The basins,the folded belts or the uplift zones are further divided into uplifts and depressions made up of sags and swells.展开更多
An MOM2 based 3-dimentional prognostic baroclinic Z-ordinate model was established to study the circulation in eastern China seas, considering the topography, inflow and outflow on the open boundary, wind stress, temp...An MOM2 based 3-dimentional prognostic baroclinic Z-ordinate model was established to study the circulation in eastern China seas, considering the topography, inflow and outflow on the open boundary, wind stress, temperature and salinity exchange on the sea surface. The results were consistent with observation and showed that the Kuroshio intrudes in large scale into the East China Sea continental shelf East China, during which its water is exchanged ceaselessly with outer sea water along Ryukyu Island. The Tsushima Warm Current is derived from several sources, a branch of the Kuroshio, part of the Taiwan Warm Current, and Yellow Sea mixed water coming from the west of Cheju Island. The water from the west of Cheju Island contributes ap-proximately 13% of the Isushima Warm Current total transport through the Korea Strait. The circulation in the Bohai Sea and Yellow Sea is basically cyclonic circulation, and is comprised of coastal currents and the Yellow Sea Warm Current. Besides simulation of the real circulation, numerical experiments were conducted to study the dynamic mechanism. The numerical experiments indicated that wind directly drives the East China Sea and Yellow Sea Coastal Currents, and strengthens the Korea Coastal Current and Yellow Sea Warm Current. In the no wind case, the kinetic energy of the coastal current area and main YSWC area is only 1% of that of the wind case. Numerical experiments also showed that the Tsushima Warm Current is of great importance to the formation of the Korea Coastal Current and Yellow Sea Warm Current.展开更多
The multi-scale characteristics of wave significant height (Hs) in eastern China seas were revealed by multi-scale wavelet analysis. In order to understand the relation between wave and wind, the TOPEX/Poseidon meas...The multi-scale characteristics of wave significant height (Hs) in eastern China seas were revealed by multi-scale wavelet analysis. In order to understand the relation between wave and wind, the TOPEX/Poseidon measurements of Hs and wind speed were analyzed. The result showed that Hs and wind speed change in multi-scale at one-, two-month, half-, one- and two-year cycles. But in a larger time scale, the variations in Hs and wind speed are different. Hs has a five-year cycle similar to the cycle of ENSO variation, while the wind speed has no such cycle. In the time domain, the correlation between Hs and ENSO is unclear.展开更多
Temperature in the Eastern China Seas(ECS), including the Bohai, Yellow, and East China seas, is crucially important with regard to weather forecasting and fishery activities of adjacent countries. Although sea surfac...Temperature in the Eastern China Seas(ECS), including the Bohai, Yellow, and East China seas, is crucially important with regard to weather forecasting and fishery activities of adjacent countries. Although sea surface temperature(SST) in the ECS has demonstrated a dramatically accelerated trend of warming after a regime shift(1976–1996), trends beneath the surface remain poorly understood because of the sparsity of observations. This study used in situ hydrographic data from 1976 to 1996 to examine upperocean temperature trends in the ECS. It was found that the multilevel trends show consistency with that of the surface water; i.e., warming is faster in winter than summer. However, the magnitudes of the trends weaken with increasing depth. Furthermore, the seasonal dif ference in the upper ocean is mainly associated with the warm currents in the ECS, which implies an essential contribution from horizontal advection. These phenomena could also be detected from data acquired from the routinely observed PN and 34°N sections. The spatiotemporal patterns of temperature trends in the upper ECS extend our understanding beyond the SST, especially highlighting the role of ocean dynamics in forming temperature patterns beneath the surface in comparison with atmospheric ef fects.展开更多
The statistics of tidal gauging records showed that the mean sea level of the China Seas has risen for 14 cm in past 100 years. The annual mean sea levels of the Eastern China Seas have been rising at a speed of about...The statistics of tidal gauging records showed that the mean sea level of the China Seas has risen for 14 cm in past 100 years. The annual mean sea levels of the Eastern China Seas have been rising at a speed of about 0.21 -0.23 cm/a since 1960. The annual mean sea levels of the Eastern China Seas in 1989 were 1.45 cm higher than that in 1988 on average.The sea level rise may cause the damage of the dynamical balance of the natural environments in the coastal area? and form or strengthen many coastal disasters, such as storm-tide catastrophic events, sea water invasion landward, soil salinization in coastal lowland and plains, and beach erosion retreat.展开更多
Eolian dust is an important material source of marine sediment and heavy metals influencing marine environment and primary productivity. Although the eastern China Seas and their adjacent regions are downwind of East ...Eolian dust is an important material source of marine sediment and heavy metals influencing marine environment and primary productivity. Although the eastern China Seas and their adjacent regions are downwind of East Asian dust sources and have potentially high atmospheric input, study on the eolian dust in these regions is limited. This study on the compositions of eolian dust indicated that dust concentration and particle sizes varied with seasons and meteorologic conditions, that mineral and chemical compositions have significant regional variation, and that high Fe content is one of the characteristics of eolian dust which was found to be a mixture of natural loess and/or soil and anthropogenic matter that contained fairly high S and heavy metals.展开更多
The ocean is the largest active carbon reservoir on Earth. Organic carbon(OC), as the primary species of carbon sequestration in the ocean, plays an important role in the global carbon cycle through its deposition and...The ocean is the largest active carbon reservoir on Earth. Organic carbon(OC), as the primary species of carbon sequestration in the ocean, plays an important role in the global carbon cycle through its deposition and burial. In this study,sedimentary OC data from 5796 stations, together with relevant geochemical and sedimentological parameters in the Bohai Sea,Yellow Sea, and East China Sea(BYES) were used to summarize and elucidate the distribution and burial patterns of sedimentary OC, and assess carbon sink effect of sedimentary OC burial. The results show that the OC content in the sediments of the BYES ranges from 0.00% to 2.12%, with an average content of 0.47%±0.26%. OC content is significantly correlated with finegrained sediments, with an average OC content in mud areas being 39% higher than that in non-mud areas. Modern OC buried in the BYES are mainly deposited in 7 major mud areas, with a total sedimentary OC burial flux of approximately 8.20 Mt C yr^(–1).Among them, the burial flux of biospheric OC is 6.92 Mt C yr^(–1), equivalent to the OC consumption amount of silicate weathering of the 9 major river basins in the eastern China. In its natural state, the annually sequestered OC in the sediments of the eastern China seas is equivalent to 25.37 Mt of atmospheric CO_(2), indicating a significant carbon sink effect. The distribution and burial of terrigenous OC in the BYES are mainly influenced by the large river inputs and complex marine hydrodynamic environment,while human activities such as dam construction have significantly altered the OC burial in these coastal mud areas.展开更多
Statistical characteristics of mesoscale eddies in the Eastern China Sea (ECS) are analyzed using altimetry sea surface height anomaly (SSHA) data from 1993 to 2010. A velocity geometry-based automated eddy detect...Statistical characteristics of mesoscale eddies in the Eastern China Sea (ECS) are analyzed using altimetry sea surface height anomaly (SSHA) data from 1993 to 2010. A velocity geometry-based automated eddy detection scheme is employed to detect eddies from the SSHA data to generate an eddy data set. About 1,096 eddies (one lifetime of eddies is counted as one eddy) with a lifetime longer than or equal to 4 weeks are identified in this region. The average lifetime and radius of eddies are 7 weeks and 55 km, respectively, and there is no significant difference between cyclonic eddies (CEs) and anticyclonic eddies (AEs) in this respect. Eddies' lifetimes are generally longer in deep water than in shallow water. Most eddies propagate northeastward along the Kuroshio (advected by the Kuroshio), with more CEs generated on its western side and AEs on its eastern side. The variation of the Kuroshio transport is one of the major mechanisms for eddy genesis, however the generation of AEs on the eastern side of the Kuroshio (to the open ocean) is also subject to other factors, such as the wind stress curl due to the presence of the Ryukyu Islands and the disturbance from the open ocean.展开更多
Based on data from satellite and surface observations,the horizontal and vertical distributions of clouds over eastern China and the East China Sea are examined.Three maximum centers of cloud cover are clearly visible...Based on data from satellite and surface observations,the horizontal and vertical distributions of clouds over eastern China and the East China Sea are examined.Three maximum centers of cloud cover are clearly visible in the horizontal distribution of total cloud cover.Two of these maxima occur over land.As the clouds mainly originate from the climbing airflows in the southern and eastern slopes of the Tibetan Plateau,they can be classified as dynamic clouds.The third center of cloud cover is over the sea.As the clouds mainly form from the evaporation of the warm Kuroshio Current,they can be categorized as thermodynamic clouds.Although the movement of the cloud centers reflect the seasonal variation of the Asian summer monsoon,cloud fractions of six cloud types that are distinct from the total cloud cover show individual horizontal patterns and seasonal variations.In their vertical distribution,cloud cover over the land and sea exhibits different patterns in winter but similar patterns in summer.In cold seasons,limited by divergent westerlies in the middle troposphere,mid-level clouds prevail over the leeside of the Tibetan Plateau.At the same time,suppressed by strong downdraft of the western Pacific subtropical high,low clouds dominate over the ocean.In warm seasons both continental and marine clouds can penetrate upward into the upper troposphere because they are subject to similar unstable stratification conditions.展开更多
The biogenic compound dimethylsulfide(DMS)produced by a range of marine biota is the major natural source of re-duced sulfur to the atmosphere and plays a major role in the formation and evolution of aerosols,potentia...The biogenic compound dimethylsulfide(DMS)produced by a range of marine biota is the major natural source of re-duced sulfur to the atmosphere and plays a major role in the formation and evolution of aerosols,potentially affecting climate.The spatio-temporal distribution of satellite-derived chlorophyll_a(CHL)and aerosol optical depth(AOD)for the recent years(2011-2019)in the Eastern China Marginal Seas(ECMS)(25°-40°N,120°-130°E)are studied.The seasonal CHL peaks occurred during late April and the CHL distribution displays a clear zonal gradient.Elevated CHL was also observed along the northern and western coastlines during summer and winter seasons.Trend analysis shows that mean CHL decreases by about 10%over the 9-year study period,while AOD was higher in south and lower in north during summertime.A genetic algorithm technique is used to calibrate the key model parameters and simulations are carried out for 2015,a year when field data was available.Our simulation results show that DMS seawater concentration ranges from 1.56 to 5.88 nmol L^(−1) with a mean value of 2.76 nmol L^(−1).DMS sea-air flux ranges from 2.66 to 5.00mmol m^(−2) d^(−1) with mean of 3.80mmol m^(−2) d^(−1).Positive correlations of about 0.5 between CHL and AOD were found in the study region,with higher correlations along the coasts of Jiangsu and Zhejiang Provinces.The elevated CHL concentration along the west coast is correlated with increased sea-water concentrations of DMS in the region.Our results suggest a possible influ-ence of DMS-derived aerosol in the local ECMS atmosphere,especially along the western coastline of ECMS.展开更多
Long chain alkyl diols have shown important potential for the reconstruction of sea surface temperature,productivities and upwelling conditions in marine or lacustrine environments.However,little is known about the di...Long chain alkyl diols have shown important potential for the reconstruction of sea surface temperature,productivities and upwelling conditions in marine or lacustrine environments.However,little is known about the distribution and sources of the diols in eastern China marginal seas(CMS),which are areas of important organic carbon sink.Here the contents of C_(30) and C_(32)1,15-diols were analyzed in 181 surface sediments from eastern CMS.The similar distribution pattern and strong linear correlation between C_(30) and C_(32) diols indicated that they had similar biological source,with a dominance of C_(30) diol.Their contents ranged from 7-2726 ng g^(-1) for C_(30) diol and 5-669 ng g^(-1) for C_(32) diol,and both showed higher values mainly in the mud area of the Yellow Sea,while the TOC normalized contents showed a more obvious seaward increasing trend.The similar distribution pattern and significant positive correlation between diols and the other marine biomarkers(brassicasterol,dinosterol,C_(37) alkenones) indicated C_(30) and C_(32) diols in eastern CMS were mainly from marine algae.This conclusion was also supported by principal component analysis(PCA).Our results also showed that sediment diol contents were generally related to marine productivity,suggesting that diols could be applied for marine productivity reconstruction in eastern CMS.展开更多
Results are presented about the changes in chlorophyll a density, carbon fixation and nutrient levels in the surfacewaters of three transects of the southern South China Sea (SCS), northern Java Sea (JS) and easte...Results are presented about the changes in chlorophyll a density, carbon fixation and nutrient levels in the surfacewaters of three transects of the southern South China Sea (SCS), northern Java Sea (JS) and eastern Indian Ocean (IO) duringApril 5-16 of 2011. The in situ Chl a concentration and carbon fixation showed decreasing trends from high to low latitudealong the three transects, while the photosynthetic rate of phytoplankton estimated from 14C incorporation displayed no simplevariation with latitude. Chl a concentration and carbon fixation in the IO water was lower than that in the JS water. Highersalinity and lower contents of dissolved inorganic nitrogen (DIN) and silicate (SiO3^2-) characterized the IO water as comparedto the SCS or JS water, and the PO4^3- content was lower in the IO water than in the SCS or JS water in most cases. Our resultsalso indicate the importance of DIN and SiO3^2- concentrations for the geographical changes in phytoplankton biomass andprimary productivity among the three regions.展开更多
基金supported by four funds,including the National Key Research and Development Program of China(No.2022YFC3106102)the Marine Science and Technology Innovation Project of Jiangsu Province(Nos.JSZRH YKJ202105,JSZRHYKI202303)+1 种基金the Nantong Social and Livelihood Science and Technology Project(Nos.MS12022009,MS22022082,MS22022083)the Project on Excellent Post-Graduate Dissertation of Hohai University(No.422003470).
文摘Climate change affects the activity of global and regional tropical cyclones(TCs).Among all TCs,typical super typhoons(STYs)are particularly devastating because they maintain their intensity when landing on the coast and thus cause casualties,economic losses,and environmental damage.Using a 3D tidal model,we reconstructed the typhoon(TY)wind field to simulate the storm surge induced by typical STYs.The TY activity was then analyzed using historical data.Results showed a downtrend of varying degrees in the annual frequency of STYs and TCs in the Western North Pacific(WNP)Basin,with a significant trend change observed for TCs from 1949 to 2021.A large difference in the interannual change in frequency was found between STYs and TCs in the WNP and Eastern China Sea(ECS).Along the coast of EC,the frequency of landfall TCs showed a weak downtrend,and the typical STYs showed reverse micro growth with peak activity in August.Zhejiang,Fujian,and Taiwan were highly vulnerable to the frontal hits of typical STYs.Affected by climate change,the average lifetime maximum intensity(LMI)locations and landfall locations of typical STYs in the ECS basin showed a significant poleward migration trend.In addition,the annual average LMI and accumulated cyclone energy showed an uptrend,indicating the increasing severity of the disaster risk.Affected by the typical STY activity in the ECS,the maximum storm surge area also showed poleward migration,and the coast of North China faced potential growth in high storm surge risks.
基金The National Natural Science Foundation of China under contract No 40876033the foundation of Geological Investigation Bureau of China under contract No HY126-03
文摘The geological-geophysical map series of the eastern China seas and adjacent region (1:1 000 000) will be published in the late half year of 2009. The regional tectonic map is one of the main professional maps. The Mapping methods, the division method of geological tectonic units and the main geological tectonic units are mainly discussed. The strata from Pliocene to Holocene are peeled off so as to display the Pre-Pliocene structures. In basins, isopaches are drawn for the Cenozoic deposits. The plate tectonic theory and present tectonic pattern are adopted as the priorities in tectonic division. As to the division of intraplate tectonic units, it is a revision, complement and improvement of previous dividing systems, and the nomenclature for each tectonic unit follows the current system in China. The first-order tectonic unit is plate (Pacific Plate, Eurasian Plate and Philippine Sea Plate). The second-order tectonic unit is tectonic domain (East Asian continental tectonic domain,East Asian continental margin tectonic domain and west Pacific tectonic domain). The Philippine Sea Plate and the west part of the Pacific Plate are called the West Pacific tectonic domain. The part of the Eurasian Plate involved in this study area can be further divided into East Asian continental tectonic domain and East Asian continental margin tectonic domain. The East Asian continental margin domain is composed of the Ryukyu island arc, the Okinawa Trough back-arc basin and the back-arc basin of Sea of Japan. The East Asian continental tectonic domain in this study area is composed of the Sino-Korea Massif, the Changjiang River (Yangtze) Massif and South China Massif. In turn, these massifs consist of basins, folded belts or uplift zones. The basins,the folded belts or the uplift zones are further divided into uplifts and depressions made up of sags and swells.
基金This study was supported by the Major State Basi(No.G1999043808) Youth Fund of the National 863 Project(No.G2002AA639350) and the Scientific Foundation of the Chinese
文摘An MOM2 based 3-dimentional prognostic baroclinic Z-ordinate model was established to study the circulation in eastern China seas, considering the topography, inflow and outflow on the open boundary, wind stress, temperature and salinity exchange on the sea surface. The results were consistent with observation and showed that the Kuroshio intrudes in large scale into the East China Sea continental shelf East China, during which its water is exchanged ceaselessly with outer sea water along Ryukyu Island. The Tsushima Warm Current is derived from several sources, a branch of the Kuroshio, part of the Taiwan Warm Current, and Yellow Sea mixed water coming from the west of Cheju Island. The water from the west of Cheju Island contributes ap-proximately 13% of the Isushima Warm Current total transport through the Korea Strait. The circulation in the Bohai Sea and Yellow Sea is basically cyclonic circulation, and is comprised of coastal currents and the Yellow Sea Warm Current. Besides simulation of the real circulation, numerical experiments were conducted to study the dynamic mechanism. The numerical experiments indicated that wind directly drives the East China Sea and Yellow Sea Coastal Currents, and strengthens the Korea Coastal Current and Yellow Sea Warm Current. In the no wind case, the kinetic energy of the coastal current area and main YSWC area is only 1% of that of the wind case. Numerical experiments also showed that the Tsushima Warm Current is of great importance to the formation of the Korea Coastal Current and Yellow Sea Warm Current.
基金Supported by the High-Tech Research and Development Program of China (863 Program, No, 2001AA633070 2003AA604040)the National Natural Science Foundation of China (No. 40476015).
文摘The multi-scale characteristics of wave significant height (Hs) in eastern China seas were revealed by multi-scale wavelet analysis. In order to understand the relation between wave and wind, the TOPEX/Poseidon measurements of Hs and wind speed were analyzed. The result showed that Hs and wind speed change in multi-scale at one-, two-month, half-, one- and two-year cycles. But in a larger time scale, the variations in Hs and wind speed are different. Hs has a five-year cycle similar to the cycle of ENSO variation, while the wind speed has no such cycle. In the time domain, the correlation between Hs and ENSO is unclear.
基金Supported by the China’s National Key Research and Development Projects(No.2016YFA0601803)the National Natural Science Foundation of China(Nos.41490641,41521091,U1606402)the Qingdao National Laboratory for Marine Science and Technology(No.2015ASKJ01)
文摘Temperature in the Eastern China Seas(ECS), including the Bohai, Yellow, and East China seas, is crucially important with regard to weather forecasting and fishery activities of adjacent countries. Although sea surface temperature(SST) in the ECS has demonstrated a dramatically accelerated trend of warming after a regime shift(1976–1996), trends beneath the surface remain poorly understood because of the sparsity of observations. This study used in situ hydrographic data from 1976 to 1996 to examine upperocean temperature trends in the ECS. It was found that the multilevel trends show consistency with that of the surface water; i.e., warming is faster in winter than summer. However, the magnitudes of the trends weaken with increasing depth. Furthermore, the seasonal dif ference in the upper ocean is mainly associated with the warm currents in the ECS, which implies an essential contribution from horizontal advection. These phenomena could also be detected from data acquired from the routinely observed PN and 34°N sections. The spatiotemporal patterns of temperature trends in the upper ECS extend our understanding beyond the SST, especially highlighting the role of ocean dynamics in forming temperature patterns beneath the surface in comparison with atmospheric ef fects.
文摘The statistics of tidal gauging records showed that the mean sea level of the China Seas has risen for 14 cm in past 100 years. The annual mean sea levels of the Eastern China Seas have been rising at a speed of about 0.21 -0.23 cm/a since 1960. The annual mean sea levels of the Eastern China Seas in 1989 were 1.45 cm higher than that in 1988 on average.The sea level rise may cause the damage of the dynamical balance of the natural environments in the coastal area? and form or strengthen many coastal disasters, such as storm-tide catastrophic events, sea water invasion landward, soil salinization in coastal lowland and plains, and beach erosion retreat.
文摘Eolian dust is an important material source of marine sediment and heavy metals influencing marine environment and primary productivity. Although the eastern China Seas and their adjacent regions are downwind of East Asian dust sources and have potentially high atmospheric input, study on the eolian dust in these regions is limited. This study on the compositions of eolian dust indicated that dust concentration and particle sizes varied with seasons and meteorologic conditions, that mineral and chemical compositions have significant regional variation, and that high Fe content is one of the characteristics of eolian dust which was found to be a mixture of natural loess and/or soil and anthropogenic matter that contained fairly high S and heavy metals.
基金supported by the Laoshan Laboratory (Grant No.LSKJ202204200)the Chinese Offshore Investigation and Assessment Project (Grant No.908~ZC~I~05)+2 种基金the National Natural Science Foundation of China-Shandong Joint Fund for Marine Science Research Centers (Grant No.U1606401)the National Natural Science Foundation of China Shiptime Sharing Project (Grant Nos.42049902,42149902)the Taishan Scholar Program of Shandong (Grant No.tspd20181216)。
文摘The ocean is the largest active carbon reservoir on Earth. Organic carbon(OC), as the primary species of carbon sequestration in the ocean, plays an important role in the global carbon cycle through its deposition and burial. In this study,sedimentary OC data from 5796 stations, together with relevant geochemical and sedimentological parameters in the Bohai Sea,Yellow Sea, and East China Sea(BYES) were used to summarize and elucidate the distribution and burial patterns of sedimentary OC, and assess carbon sink effect of sedimentary OC burial. The results show that the OC content in the sediments of the BYES ranges from 0.00% to 2.12%, with an average content of 0.47%±0.26%. OC content is significantly correlated with finegrained sediments, with an average OC content in mud areas being 39% higher than that in non-mud areas. Modern OC buried in the BYES are mainly deposited in 7 major mud areas, with a total sedimentary OC burial flux of approximately 8.20 Mt C yr^(–1).Among them, the burial flux of biospheric OC is 6.92 Mt C yr^(–1), equivalent to the OC consumption amount of silicate weathering of the 9 major river basins in the eastern China. In its natural state, the annually sequestered OC in the sediments of the eastern China seas is equivalent to 25.37 Mt of atmospheric CO_(2), indicating a significant carbon sink effect. The distribution and burial of terrigenous OC in the BYES are mainly influenced by the large river inputs and complex marine hydrodynamic environment,while human activities such as dam construction have significantly altered the OC burial in these coastal mud areas.
基金The altimeter data are obtained from the AVISO Web site, and the CCMP sea surface wind vector data are obtained from the Asia Pacific Data Research Center (APDRC) Web site. Funding for this study is provided by the National Natural Science Foundation of China (Grant No. 41276033) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). CD appreciates the supports from the National Natural Science Foundation of China (Grant Nos. 41476022 and 41490643). Startup Foundation for Introducing Talent of Nanjing University of Intbrmation Science and Technology (2013r121, 2014r072), Program for Innovation Research and Entrepreneurship team in Jiangsu Province,National Basic Research Program of China (No. 2014CB745000), and National Programme on Global Change and Air-Sea Interaction (No. GASI- 03-IPOVAI-05). Yu Liu is supported by State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology Chinese Academy of Sciences (LTO1407).
文摘Statistical characteristics of mesoscale eddies in the Eastern China Sea (ECS) are analyzed using altimetry sea surface height anomaly (SSHA) data from 1993 to 2010. A velocity geometry-based automated eddy detection scheme is employed to detect eddies from the SSHA data to generate an eddy data set. About 1,096 eddies (one lifetime of eddies is counted as one eddy) with a lifetime longer than or equal to 4 weeks are identified in this region. The average lifetime and radius of eddies are 7 weeks and 55 km, respectively, and there is no significant difference between cyclonic eddies (CEs) and anticyclonic eddies (AEs) in this respect. Eddies' lifetimes are generally longer in deep water than in shallow water. Most eddies propagate northeastward along the Kuroshio (advected by the Kuroshio), with more CEs generated on its western side and AEs on its eastern side. The variation of the Kuroshio transport is one of the major mechanisms for eddy genesis, however the generation of AEs on the eastern side of the Kuroshio (to the open ocean) is also subject to other factors, such as the wind stress curl due to the presence of the Ryukyu Islands and the disturbance from the open ocean.
基金National Basic Research Program of China (973 Program) (2010CB951904)National Natural Science Foundation of China (41075034)
文摘Based on data from satellite and surface observations,the horizontal and vertical distributions of clouds over eastern China and the East China Sea are examined.Three maximum centers of cloud cover are clearly visible in the horizontal distribution of total cloud cover.Two of these maxima occur over land.As the clouds mainly originate from the climbing airflows in the southern and eastern slopes of the Tibetan Plateau,they can be classified as dynamic clouds.The third center of cloud cover is over the sea.As the clouds mainly form from the evaporation of the warm Kuroshio Current,they can be categorized as thermodynamic clouds.Although the movement of the cloud centers reflect the seasonal variation of the Asian summer monsoon,cloud fractions of six cloud types that are distinct from the total cloud cover show individual horizontal patterns and seasonal variations.In their vertical distribution,cloud cover over the land and sea exhibits different patterns in winter but similar patterns in summer.In cold seasons,limited by divergent westerlies in the middle troposphere,mid-level clouds prevail over the leeside of the Tibetan Plateau.At the same time,suppressed by strong downdraft of the western Pacific subtropical high,low clouds dominate over the ocean.In warm seasons both continental and marine clouds can penetrate upward into the upper troposphere because they are subject to similar unstable stratification conditions.
基金Instrument Developing Project of the Chinese Academy of Sciences(YZ201136)National Natural Science Foundation of China(41106086,41474065,41376059,41376061,91428205,41576036,41076028,41476167,and 41606080)Chinese Academy of Sciences Scholarship,the Strat
基金the Naval Research Laboratory Remote Sensing Divisionthe Naval Center for Space Technology,and the National Polar-orbiting Operational Environmental Satellite System(NPOESS)Integrated Program Office(IPO)for providing satel lite-based WIND and SST data.
文摘The biogenic compound dimethylsulfide(DMS)produced by a range of marine biota is the major natural source of re-duced sulfur to the atmosphere and plays a major role in the formation and evolution of aerosols,potentially affecting climate.The spatio-temporal distribution of satellite-derived chlorophyll_a(CHL)and aerosol optical depth(AOD)for the recent years(2011-2019)in the Eastern China Marginal Seas(ECMS)(25°-40°N,120°-130°E)are studied.The seasonal CHL peaks occurred during late April and the CHL distribution displays a clear zonal gradient.Elevated CHL was also observed along the northern and western coastlines during summer and winter seasons.Trend analysis shows that mean CHL decreases by about 10%over the 9-year study period,while AOD was higher in south and lower in north during summertime.A genetic algorithm technique is used to calibrate the key model parameters and simulations are carried out for 2015,a year when field data was available.Our simulation results show that DMS seawater concentration ranges from 1.56 to 5.88 nmol L^(−1) with a mean value of 2.76 nmol L^(−1).DMS sea-air flux ranges from 2.66 to 5.00mmol m^(−2) d^(−1) with mean of 3.80mmol m^(−2) d^(−1).Positive correlations of about 0.5 between CHL and AOD were found in the study region,with higher correlations along the coasts of Jiangsu and Zhejiang Provinces.The elevated CHL concentration along the west coast is correlated with increased sea-water concentrations of DMS in the region.Our results suggest a possible influ-ence of DMS-derived aerosol in the local ECMS atmosphere,especially along the western coastline of ECMS.
基金supported by the National Natural Science Foundation of China(Nos.41521064 and 41630966)
文摘Long chain alkyl diols have shown important potential for the reconstruction of sea surface temperature,productivities and upwelling conditions in marine or lacustrine environments.However,little is known about the distribution and sources of the diols in eastern China marginal seas(CMS),which are areas of important organic carbon sink.Here the contents of C_(30) and C_(32)1,15-diols were analyzed in 181 surface sediments from eastern CMS.The similar distribution pattern and strong linear correlation between C_(30) and C_(32) diols indicated that they had similar biological source,with a dominance of C_(30) diol.Their contents ranged from 7-2726 ng g^(-1) for C_(30) diol and 5-669 ng g^(-1) for C_(32) diol,and both showed higher values mainly in the mud area of the Yellow Sea,while the TOC normalized contents showed a more obvious seaward increasing trend.The similar distribution pattern and significant positive correlation between diols and the other marine biomarkers(brassicasterol,dinosterol,C_(37) alkenones) indicated C_(30) and C_(32) diols in eastern CMS were mainly from marine algae.This conclusion was also supported by principal component analysis(PCA).Our results also showed that sediment diol contents were generally related to marine productivity,suggesting that diols could be applied for marine productivity reconstruction in eastern CMS.
基金National Natural Science Foundation of China(41206132,41276162,41130855)Chinese Academy of Sciences Strategic Pilot Science and Technology(XDA11020202,XDA05030403)+2 种基金National Project of Basic Sciences and Technology(2012FY112400,2013FY111200)Chinese Academy of Sciences Knowledge Innovation Program(SQ201115)Natural Science Foundation of Guangdong Province(S2011040000151)
文摘Results are presented about the changes in chlorophyll a density, carbon fixation and nutrient levels in the surfacewaters of three transects of the southern South China Sea (SCS), northern Java Sea (JS) and eastern Indian Ocean (IO) duringApril 5-16 of 2011. The in situ Chl a concentration and carbon fixation showed decreasing trends from high to low latitudealong the three transects, while the photosynthetic rate of phytoplankton estimated from 14C incorporation displayed no simplevariation with latitude. Chl a concentration and carbon fixation in the IO water was lower than that in the JS water. Highersalinity and lower contents of dissolved inorganic nitrogen (DIN) and silicate (SiO3^2-) characterized the IO water as comparedto the SCS or JS water, and the PO4^3- content was lower in the IO water than in the SCS or JS water in most cases. Our resultsalso indicate the importance of DIN and SiO3^2- concentrations for the geographical changes in phytoplankton biomass andprimary productivity among the three regions.