The central-southern part of the eastern border of the Sichuan-Yunnan rhombic block provides the research strategy of ‘trade space for time' with an interesting fault system, where the segments have similar focal...The central-southern part of the eastern border of the Sichuan-Yunnan rhombic block provides the research strategy of ‘trade space for time' with an interesting fault system, where the segments have similar focal mechanisms and cover almost continuous spectra of elapse rates. We experiment to study the seismological characteristics of different segments with different elapse rates. We employed the de-clustered earthquake catalog for the calculation of b values for each segment. The analysis revealed that different segments have similar b values,which implies that, although different segments have different periods of earthquake recurrence, the 'natural time' for the whole fault system elapses with a homogeneous pace. We extended the earthquake potential score(EPS)for nowcasting earthquakes to a quasi-EPS(q EPS). It is found that q EPS increases with the increase of elapse rates,albeit for those fault segments whose elapse rates have exceeded 1, q EPS may better reflect the seismic hazard.展开更多
Based on the seismic station data sets from Sichuan and Yunnan provinces,we employed a multi-step seismic location method( Hypo2000 + Velest + HypoDD) to precisely locate the 7,787 earthquakes that occurred during 201...Based on the seismic station data sets from Sichuan and Yunnan provinces,we employed a multi-step seismic location method( Hypo2000 + Velest + HypoDD) to precisely locate the 7,787 earthquakes that occurred during 2010-2015 along the eastern boundaries of the Sichuan-Yunnan rhombic block,namely from southern Dawu to the Qiaojia segment.The final results show that location precision is greatly advanced and epicenter distribution exhibits good consistency with the linear distribution of the seismic faults. Earthquake distribution is quite intensive at the intersection region in the southern segment of the Xianshuihe fault,the Anninghe fault zone,the Xiaojinhe fault zone and the Daliangshan fault zone to the east. The depth profile of seismicity shows a clear stepwise activity along the active seismic fault zones. The profile crossing the faults of the Xianshuihe,Anninghe,and Daliangshan presents a complex interaction among faults near the multiple faults intersection region,Shimian,where the earthquakes are obviously divided into two groups in depth. Earthquakes are very rare at the depth of 15km-20 km,which is consistent with the region of the plastic rheology between 14km-19 km calculated by Zhu Ailan et al.,( 2005).展开更多
The geology and tectonics in the eastern margin of Tibetan Plateau are complex. The main tectonic framework is composed of blocks and faults. Using discontinuous global positioning system survey data for 2008–2014, t...The geology and tectonics in the eastern margin of Tibetan Plateau are complex. The main tectonic framework is composed of blocks and faults. Using discontinuous global positioning system survey data for 2008–2014, the velocity field for the Eurasia reference framework was obtained. Based on the velocity field, the present-day velocities of the blocks and boundary faults were estimated. The results reveal that the movement rates of the Chuan-Qing, South China, Chuan-Dian and Indo-China blocks are(17.02±0.60) mm/a,(8.77±1.51) mm/a,(13.85±1.31) mm/a and(6.84 ± 0.74) mm/a, respectively, and their movement directions are 99.5°, 120.3°, 142.9° and 153.3°, respectively. All blocks exhibit clockwise rotation. The displacement rates of the Xianshuihe, Longmenshan, Anninghe, Zemuhe, Xiaojiang and Red River faults are(7.30±1.25–8.30±1.26) mm/a,(10.07±0.97–11.79±0.89) mm/a,(0.96±0.74–2.98±1.73) mm/a,(2.03±0.49–3.20±0.73) mm/a,(3.45±0.40–6.02±0.50) mm/a and(6.23±0.56) mm/a, respectively. The Xianshuihe, Anninghe, Zemuhe and Xiaojiang faults show leftlateral strike-slip movement, while the Longmenshan and Red River faults show right-lateral strikeslip. These characteristics of the blocks and faults are related to the particular tectonic location and dynamic mechanism.展开更多
The Early Cretaceous-Early Eocene granitoids in the Tengchong Block record the evolutionary history of the Mesozoic-Cenozoic tectono-magmatic evolution of Eastern Tethys.(a)The Early Cretaceous granitoids with relativ...The Early Cretaceous-Early Eocene granitoids in the Tengchong Block record the evolutionary history of the Mesozoic-Cenozoic tectono-magmatic evolution of Eastern Tethys.(a)The Early Cretaceous granitoids with relatively low(^(87)Sr/^(86)Sr)iratios of 0.7090-0.7169 andε_(Nd)(t)values of-9.8 to-7.8 display metaluminous,calc-alkaline dominated by I-type granite affinity and hybrid mantle-crust geochemical signatures.They may have been derived from melting of the subducted Meso-Tethyan BangongNujiang oceanic crust with terrigenous sediments in an arc-continent collisional setting.(b)The Late Cretaceous-Paleocene granitoids with relatively high(^(87)Sr/^(86)Sr)iratios of 0.7109-0.7627,andε_(Nd)(t)values of-12.1 to-7.9 exhibit metaluminous to peraluminous,calc-alkaline dominated by S-type granite affinity and hybrid Lower-Upper crust geochemical signatures,which may be originated from partial melting of the Meso-Proterozoic continental crust in the collision setting between the Tengchong Block and Baoshan Block.(c)The Early Eocene granitoids have metaluminous,calc-alkaline I-type and S-type granites dual affinity,with relatively high(^(87)Sr/^(86)Sr)iratios of 0.711-0.736,ε_(Nd)(t)values of-9.4 to-4.7,showing crust-mantle mixing geochemical signatures.They may have been originated from partial melting of the late Meso-Proterozoic upper crustal components mixed with some upper mantle material during the ascent process of mantle magma caused by the subduction of the Neo-Tethyan Putao-Myitkyian oceanic crust,and collision between the Western Burma Block and the Tengchong Block.It is these multi-stage subductions and collisions that caused the spatial and temporal distribution of the granitic rocks in the Tengchong Block.展开更多
The granitic dykes in the Badu Group, Zhejiang Province, South China provide important insights on tectonic setting and crustal evolution of the South China Block (SCB) and the Indochina Block during Triassic. Here ...The granitic dykes in the Badu Group, Zhejiang Province, South China provide important insights on tectonic setting and crustal evolution of the South China Block (SCB) and the Indochina Block during Triassic. Here we report LA-ICP-MS U-Pb data of granitic rocks from the Hucun and Kengkou which show early Triassic ages of 242 ± 2 and 232 ± 3 Ma, respectively, representing their timing of emplacement. The dyke rocks are enriched in K, AI, LREE, Rb, Th, U, and Pb, and are depleted in Nb, Ta, St, and Ti. The rocks are characterized by highly fractionated REE patterns with (La/Yb)N ratios of 28.46 -38.07 with strong negative Eu anomalies (Eu/Eu* = 0,65-0.73). In situ Hf isotopic analyses of zircons from the Hucun granite yielded CHf(t) values of -13.9 to -6.4 and two-stage depleted mantle Hf model ages of 1.68-2.15 Ga, which indicate that the magma was formed by partial melting of the Paleo- proterozoic metasedimentary protoliths in the Cathaysia Block. The zircons from the Kengkou granite have eHf(t) values ranging from -40.7 to 31.5 and yield two-stage depleted mantle Hf model ages of 0.99 -2.49 Ga, indicating magma origin from a mixed source. The Hucun and Kengkou dykes, together with the Triassic A-type granites in SE China were probably generated during magmatism associated with crust-mantle decoupling along the convergent plate boundary between SCB and the Indochina Block.展开更多
Harvard Centroid Moment Tensor (CMT) solutions for earthquakes from 1977 to 2004 showed that the stress fields are obviously different in northwestern Sichuan sub-block (NWSSB), western parts of Central Yunnan sub...Harvard Centroid Moment Tensor (CMT) solutions for earthquakes from 1977 to 2004 showed that the stress fields are obviously different in northwestern Sichuan sub-block (NWSSB), western parts of Central Yunnan sub-block (CYSB) and eastern part of CYSB. The characteristics of the mean stress fields in these three regions are obtained by fitting to CMT solutions. The stress state in NWSSB is characterized by its sub-horizontal tensile principal axis of stress (T axis) in roughly N-S direction and west dipping compressive principal axis of stress (P axis); the one in western part of CYSB is characterized by its ENE dipping T axis and sub-horizontal medium principal axis of stress (B axis) in roughly N-S direction; the one in eastern part of CYSB is characterized by its sub-horizontal P axis in roughly NNW-SSE direction and sub-horizontal T axis in roughly WSW-ENE direction. Finite element method simulation clearly shows that the Indian Plate imposes great extrusion on Sichuan-Yunnan rhombic block (SYRB) near Assam massif. The value of the simulated compressive principal stress decreases with the distance from Assam massif. The simulated directions of the T axes in SYRB form annular distribution encir cling Assam. For a homogeneous elastic medium with free boundary conditions on the top and bottom surfaces as well as the displacement boundary conditions derived from the GPS observations on the lateral boundaries, the computation results are consistent with the Harvard CMT solutions in NWSSB and western part of CYSB, while inconsistent with the Harvard CMT solutions in eastern part of CYSB. The inconsistency in eastern part of CYSB can be reduced when it includes inhomogeneous elastic media. The stress states in NWSSB and western part of CYSB revealed by the Harvard CMT solutions are not local, which are mainly controlled by the boundary force on the whole region. On the other hand, the stress state in eastern part of CYSB given by the Harvard CMT solutions is local, which may be affected by local topography, material inhomogeneity, and the drag force underneath.展开更多
The Sichuan-Yunnan Block(SYB)is located at the SE margin of the Qinghai-Tibetan Plateau(TP).Under the influence of the southeastward movement of material originated from the TP,intense crustal deformation,frequent sei...The Sichuan-Yunnan Block(SYB)is located at the SE margin of the Qinghai-Tibetan Plateau(TP).Under the influence of the southeastward movement of material originated from the TP,intense crustal deformation,frequent seismic activity,and complex geological structures are observed in the SYB.The Lijiang-Xiaojinhe fault(LXF)goes through the central part of the SYB,dividing it into two blocks from north to south,and forming an intersecting fault system with the surrounding faults.This paper firstly introduces the morphology and the nature of the LXF,the distribution of the regional surface displacements and the focal mechanisms,and then analyzes the medium deformation and the effects of faults.Moreover,according to the regional tectonics and geophysical patterns,the paper discusses the characteristics of the north-south blocks of the SYB and the abrupt change of deep structure along the LXF zone.Since seismic anisotropy is an essential property for detecting crustal stress,deep structures and dynamical mechanisms,this paper is dedicated to the advances in seismic anisotropy at different depths and different scales in the study area.There are noteworthy differences in the anisotropic features between the north part and the south part of the SYB,possibly associated with a clear boundary adjacent to the LXF.Such phenomenon suggests some close correlation between anisotropic zoning boundary and the LXF,although this boundary is not consistent with the LXF in strike.The results from the deformation of the crust and the upper mantle elucidate the distribution patterns of the crust-mantle coupling in the north part and the crustmantle decoupling in the south part,even though this conclusion needs to be further verified by more studies.Presently,the scientific understanding of the deep tectonics and the media deformation around the“generalized”LXF i.e.the LXF with the Jinpingshan fault on its eastern side,is still insufficient,and related equivocal topics deserve more in-depth studies.展开更多
An intrusive dyke is linear in regional scale,tectonic stresses play an important role in controlling the orientation of fractures that form for the dyke when magma rises buoyantly into the lithosphere
Based on data from an across-fault survey along the Sichuan-Yunnan rhombic block boundaries, the recent deformation characteristics on each fault have been analyzed. It was found that the rate of crustal deformation i...Based on data from an across-fault survey along the Sichuan-Yunnan rhombic block boundaries, the recent deformation characteristics on each fault have been analyzed. It was found that the rate of crustal deformation is slowing down along the northern segment and increasing along the southern segment. Each fault has different features of deformation. The horizontal deformation is mainly characterized by left-lateral strike-slip. The rate of vertical deformation is less than that of the horizontal deformation. The faults have the feature of upper wall uplifting alternated with descending. The anomaly changes of crustal deformation at some sites are closely related to the seismicities near the sites.展开更多
The Singhbhum craton of the eastern India consists of the Singhbhum Granite Complex(SGC)and the Chotanagpur Gneissic Complex(CGC)separated by the Singhbhum Mobile Belt(SMB).The CGC is intruded by Mesoproterozoic as we...The Singhbhum craton of the eastern India consists of the Singhbhum Granite Complex(SGC)and the Chotanagpur Gneissic Complex(CGC)separated by the Singhbhum Mobile Belt(SMB).The CGC is intruded by Mesoproterozoic as well as Cretaceous mafic dykes;in展开更多
基金supported by the National Natural Science Foundation of China (NSFC, grant number U2039207)。
文摘The central-southern part of the eastern border of the Sichuan-Yunnan rhombic block provides the research strategy of ‘trade space for time' with an interesting fault system, where the segments have similar focal mechanisms and cover almost continuous spectra of elapse rates. We experiment to study the seismological characteristics of different segments with different elapse rates. We employed the de-clustered earthquake catalog for the calculation of b values for each segment. The analysis revealed that different segments have similar b values,which implies that, although different segments have different periods of earthquake recurrence, the 'natural time' for the whole fault system elapses with a homogeneous pace. We extended the earthquake potential score(EPS)for nowcasting earthquakes to a quasi-EPS(q EPS). It is found that q EPS increases with the increase of elapse rates,albeit for those fault segments whose elapse rates have exceeded 1, q EPS may better reflect the seismic hazard.
基金funded by Study on the Optimal Time Window of Single Azimuth Angle,the Three-in-one Project of Earthquake Monitoring,Prediction and Scientific Research of China Earthquake Administration(CEA-JC/3JH-162305)the Special Training Project for Youth Talents for Seismic Network,China Earthquake Administration(20150422)
文摘Based on the seismic station data sets from Sichuan and Yunnan provinces,we employed a multi-step seismic location method( Hypo2000 + Velest + HypoDD) to precisely locate the 7,787 earthquakes that occurred during 2010-2015 along the eastern boundaries of the Sichuan-Yunnan rhombic block,namely from southern Dawu to the Qiaojia segment.The final results show that location precision is greatly advanced and epicenter distribution exhibits good consistency with the linear distribution of the seismic faults. Earthquake distribution is quite intensive at the intersection region in the southern segment of the Xianshuihe fault,the Anninghe fault zone,the Xiaojinhe fault zone and the Daliangshan fault zone to the east. The depth profile of seismicity shows a clear stepwise activity along the active seismic fault zones. The profile crossing the faults of the Xianshuihe,Anninghe,and Daliangshan presents a complex interaction among faults near the multiple faults intersection region,Shimian,where the earthquakes are obviously divided into two groups in depth. Earthquakes are very rare at the depth of 15km-20 km,which is consistent with the region of the plastic rheology between 14km-19 km calculated by Zhu Ailan et al.,( 2005).
基金supported by a geological survey project of the China Geological Survey(No.1212011140013,No.12120113009800,No.121201010000150001)
文摘The geology and tectonics in the eastern margin of Tibetan Plateau are complex. The main tectonic framework is composed of blocks and faults. Using discontinuous global positioning system survey data for 2008–2014, the velocity field for the Eurasia reference framework was obtained. Based on the velocity field, the present-day velocities of the blocks and boundary faults were estimated. The results reveal that the movement rates of the Chuan-Qing, South China, Chuan-Dian and Indo-China blocks are(17.02±0.60) mm/a,(8.77±1.51) mm/a,(13.85±1.31) mm/a and(6.84 ± 0.74) mm/a, respectively, and their movement directions are 99.5°, 120.3°, 142.9° and 153.3°, respectively. All blocks exhibit clockwise rotation. The displacement rates of the Xianshuihe, Longmenshan, Anninghe, Zemuhe, Xiaojiang and Red River faults are(7.30±1.25–8.30±1.26) mm/a,(10.07±0.97–11.79±0.89) mm/a,(0.96±0.74–2.98±1.73) mm/a,(2.03±0.49–3.20±0.73) mm/a,(3.45±0.40–6.02±0.50) mm/a and(6.23±0.56) mm/a, respectively. The Xianshuihe, Anninghe, Zemuhe and Xiaojiang faults show leftlateral strike-slip movement, while the Longmenshan and Red River faults show right-lateral strikeslip. These characteristics of the blocks and faults are related to the particular tectonic location and dynamic mechanism.
基金funded by the National Natural Science Foundation of China(Grant Nos.41972312,41672329,41272365)the National Key Research and Development Project of China(Grant No.2016YFC0600509)。
文摘The Early Cretaceous-Early Eocene granitoids in the Tengchong Block record the evolutionary history of the Mesozoic-Cenozoic tectono-magmatic evolution of Eastern Tethys.(a)The Early Cretaceous granitoids with relatively low(^(87)Sr/^(86)Sr)iratios of 0.7090-0.7169 andε_(Nd)(t)values of-9.8 to-7.8 display metaluminous,calc-alkaline dominated by I-type granite affinity and hybrid mantle-crust geochemical signatures.They may have been derived from melting of the subducted Meso-Tethyan BangongNujiang oceanic crust with terrigenous sediments in an arc-continent collisional setting.(b)The Late Cretaceous-Paleocene granitoids with relatively high(^(87)Sr/^(86)Sr)iratios of 0.7109-0.7627,andε_(Nd)(t)values of-12.1 to-7.9 exhibit metaluminous to peraluminous,calc-alkaline dominated by S-type granite affinity and hybrid Lower-Upper crust geochemical signatures,which may be originated from partial melting of the Meso-Proterozoic continental crust in the collision setting between the Tengchong Block and Baoshan Block.(c)The Early Eocene granitoids have metaluminous,calc-alkaline I-type and S-type granites dual affinity,with relatively high(^(87)Sr/^(86)Sr)iratios of 0.711-0.736,ε_(Nd)(t)values of-9.4 to-4.7,showing crust-mantle mixing geochemical signatures.They may have been originated from partial melting of the late Meso-Proterozoic upper crustal components mixed with some upper mantle material during the ascent process of mantle magma caused by the subduction of the Neo-Tethyan Putao-Myitkyian oceanic crust,and collision between the Western Burma Block and the Tengchong Block.It is these multi-stage subductions and collisions that caused the spatial and temporal distribution of the granitic rocks in the Tengchong Block.
基金supported by the Central Fundamental Research(Grant No.DZLXJK201504)
文摘The granitic dykes in the Badu Group, Zhejiang Province, South China provide important insights on tectonic setting and crustal evolution of the South China Block (SCB) and the Indochina Block during Triassic. Here we report LA-ICP-MS U-Pb data of granitic rocks from the Hucun and Kengkou which show early Triassic ages of 242 ± 2 and 232 ± 3 Ma, respectively, representing their timing of emplacement. The dyke rocks are enriched in K, AI, LREE, Rb, Th, U, and Pb, and are depleted in Nb, Ta, St, and Ti. The rocks are characterized by highly fractionated REE patterns with (La/Yb)N ratios of 28.46 -38.07 with strong negative Eu anomalies (Eu/Eu* = 0,65-0.73). In situ Hf isotopic analyses of zircons from the Hucun granite yielded CHf(t) values of -13.9 to -6.4 and two-stage depleted mantle Hf model ages of 1.68-2.15 Ga, which indicate that the magma was formed by partial melting of the Paleo- proterozoic metasedimentary protoliths in the Cathaysia Block. The zircons from the Kengkou granite have eHf(t) values ranging from -40.7 to 31.5 and yield two-stage depleted mantle Hf model ages of 0.99 -2.49 Ga, indicating magma origin from a mixed source. The Hucun and Kengkou dykes, together with the Triassic A-type granites in SE China were probably generated during magmatism associated with crust-mantle decoupling along the convergent plate boundary between SCB and the Indochina Block.
基金Foundation item: State Key Basic research and Development Project from Ministry of Science and Technology of China (2004cb418406)National Natural Science Foundation of China (40521002).
文摘Harvard Centroid Moment Tensor (CMT) solutions for earthquakes from 1977 to 2004 showed that the stress fields are obviously different in northwestern Sichuan sub-block (NWSSB), western parts of Central Yunnan sub-block (CYSB) and eastern part of CYSB. The characteristics of the mean stress fields in these three regions are obtained by fitting to CMT solutions. The stress state in NWSSB is characterized by its sub-horizontal tensile principal axis of stress (T axis) in roughly N-S direction and west dipping compressive principal axis of stress (P axis); the one in western part of CYSB is characterized by its ENE dipping T axis and sub-horizontal medium principal axis of stress (B axis) in roughly N-S direction; the one in eastern part of CYSB is characterized by its sub-horizontal P axis in roughly NNW-SSE direction and sub-horizontal T axis in roughly WSW-ENE direction. Finite element method simulation clearly shows that the Indian Plate imposes great extrusion on Sichuan-Yunnan rhombic block (SYRB) near Assam massif. The value of the simulated compressive principal stress decreases with the distance from Assam massif. The simulated directions of the T axes in SYRB form annular distribution encir cling Assam. For a homogeneous elastic medium with free boundary conditions on the top and bottom surfaces as well as the displacement boundary conditions derived from the GPS observations on the lateral boundaries, the computation results are consistent with the Harvard CMT solutions in NWSSB and western part of CYSB, while inconsistent with the Harvard CMT solutions in eastern part of CYSB. The inconsistency in eastern part of CYSB can be reduced when it includes inhomogeneous elastic media. The stress states in NWSSB and western part of CYSB revealed by the Harvard CMT solutions are not local, which are mainly controlled by the boundary force on the whole region. On the other hand, the stress state in eastern part of CYSB given by the Harvard CMT solutions is local, which may be affected by local topography, material inhomogeneity, and the drag force underneath.
基金supported by National Natural Science Foundation of China Projects(42074065)Basic Research Operation Expenses of the Institute of Earthquake Prediction,China Earthquake Administration(2021IEF0103)。
文摘The Sichuan-Yunnan Block(SYB)is located at the SE margin of the Qinghai-Tibetan Plateau(TP).Under the influence of the southeastward movement of material originated from the TP,intense crustal deformation,frequent seismic activity,and complex geological structures are observed in the SYB.The Lijiang-Xiaojinhe fault(LXF)goes through the central part of the SYB,dividing it into two blocks from north to south,and forming an intersecting fault system with the surrounding faults.This paper firstly introduces the morphology and the nature of the LXF,the distribution of the regional surface displacements and the focal mechanisms,and then analyzes the medium deformation and the effects of faults.Moreover,according to the regional tectonics and geophysical patterns,the paper discusses the characteristics of the north-south blocks of the SYB and the abrupt change of deep structure along the LXF zone.Since seismic anisotropy is an essential property for detecting crustal stress,deep structures and dynamical mechanisms,this paper is dedicated to the advances in seismic anisotropy at different depths and different scales in the study area.There are noteworthy differences in the anisotropic features between the north part and the south part of the SYB,possibly associated with a clear boundary adjacent to the LXF.Such phenomenon suggests some close correlation between anisotropic zoning boundary and the LXF,although this boundary is not consistent with the LXF in strike.The results from the deformation of the crust and the upper mantle elucidate the distribution patterns of the crust-mantle coupling in the north part and the crustmantle decoupling in the south part,even though this conclusion needs to be further verified by more studies.Presently,the scientific understanding of the deep tectonics and the media deformation around the“generalized”LXF i.e.the LXF with the Jinpingshan fault on its eastern side,is still insufficient,and related equivocal topics deserve more in-depth studies.
基金Financially supported by the program SINOPROBE-04-02the Special Funds for Sciences and Technology Research of Public Welfare Trades 201011054the research grant of Guangxi Key Laboratory of Hidden Metallic Ore Deposits Exploration 15-140-27-13
文摘An intrusive dyke is linear in regional scale,tectonic stresses play an important role in controlling the orientation of fractures that form for the dyke when magma rises buoyantly into the lithosphere
文摘Based on data from an across-fault survey along the Sichuan-Yunnan rhombic block boundaries, the recent deformation characteristics on each fault have been analyzed. It was found that the rate of crustal deformation is slowing down along the northern segment and increasing along the southern segment. Each fault has different features of deformation. The horizontal deformation is mainly characterized by left-lateral strike-slip. The rate of vertical deformation is less than that of the horizontal deformation. The faults have the feature of upper wall uplifting alternated with descending. The anomaly changes of crustal deformation at some sites are closely related to the seismicities near the sites.
文摘The Singhbhum craton of the eastern India consists of the Singhbhum Granite Complex(SGC)and the Chotanagpur Gneissic Complex(CGC)separated by the Singhbhum Mobile Belt(SMB).The CGC is intruded by Mesoproterozoic as well as Cretaceous mafic dykes;in