The widespread Carboniferous KT-I dolomite in the eastern margin of the Pre-Caspian Basin is an important hydrocarbon reservoir. The dolomite lithology is dominated by crystalline dolomite. The δ18O values range from...The widespread Carboniferous KT-I dolomite in the eastern margin of the Pre-Caspian Basin is an important hydrocarbon reservoir. The dolomite lithology is dominated by crystalline dolomite. The δ18O values range from -6.71‰ to 2.45‰, and average 0.063‰, obviously larger than -2.5‰, indicating low-temperature dolomite of evaporation origin. Stable strontium isotope ratios (87Sr/86Sr) range from 0.70829 to 0.70875 and average 0.708365, very consistent with 87Sr/86Sr ratios in Carboniferous seawater. Chemical analysis of Ca and Mg elements shows that the dolomite has 9.1 mole% excess Ca or even higher before stabilization. The degree of order of dolomite is medium–slightly poor, varying in a range of 0.336-0.504 and averaging 0.417. It suggests that the dolomite formed under near-surface conditions. There are two models for the origin of the Carboniferous KT-I dolomite reservoir. These are 1) the evaporation concentration – weathering crust model and 2) the shoal facies – seepage reflux model. The former is mainly developed in restricted platforms – evaporate platforms of restricted marine deposition environments with a representation of dolomite associated with gypsum and mudstone. The latter mainly formed in platform edge shoals and intra-platform shoals and is controlled by dolomitization due to high salinity sea water influx from adjacent restricted sea or evaporate platform.展开更多
We applied the material balance principle of the denudation volume and sedimentary flux to study the denudation-accumulation system between the Longmen Mountains (Mts.) and the foreland basin. The amount of sediment...We applied the material balance principle of the denudation volume and sedimentary flux to study the denudation-accumulation system between the Longmen Mountains (Mts.) and the foreland basin. The amount of sediment in each sedimentation stage of the basin was estimated to obtain the denudation volume, erosion thickness and deposit thickness since the Late Triassic Epoch, to enable us to recover the paleoelevation of the provenance and the sedimentary area. The results show the following: (1) Since the Late Triassic Epoch, the elevation of the surface of the Longmen Mts. has uplifted from 0 m to 2751 m, and the crust of the Longmen Mts. has uplifted by 9.8 km. Approximately 72% of the materials introduced have been denuded from the mountains. (2) It is difficult to recover the paleoelevation of each stage of the Longmen Mts. foreland basin quantitatively by the present-day techniques and data. (3) The formation of the Longmen Mts. foreland basin consisted of three stages of thrust belt tectonic load and three stages of thrust belt erosional unload. During tectonic loading stages (Late Triassic Epoch, Late Jurassic-Early Cretaceous, Late Cretaceous-Miocene), the average elevation of Longmen Mts. was lower (approximately 700-1700 m). During erosional unloading stages (Early and Middle Jurassic, Middle Cretaceous and Jiaguan, Late Cenozoic), the average elevation of Longmen Mts. was high at approximately 2000-2800m.展开更多
This study examines the relationship between high positive isostatic gravity anomalies (IGA), steep topography and lower crustal extrusion at the eastern margin of the Tibetan Plateau. IGA data has revealed uplift a...This study examines the relationship between high positive isostatic gravity anomalies (IGA), steep topography and lower crustal extrusion at the eastern margin of the Tibetan Plateau. IGA data has revealed uplift and extrusion of lower crustal flow in the Longmen Shan Mountains (the LMS). Firstly, The high positive IGA zone corresponds to the LMS orogenic belt. It is shown that abrupt changes in IGA correspond to zones of abrupt change of topography, crustal thickness and rock density along the LMS. Secondly, on the basis of the Airy isostasy theory, simulations and inversions of the positive IGA were conducted using three-dimensional bodies. The results indicated that the LMS lacks a mountain root, and that the top surface of the lower crust has been elevated by 11 km, leading to positive IGA, tectonic load and density load. Thirdly, according to Watts's flexural isostasy model, elastic deflection occurs, suggesting that the limited (i.e. narrow) tectonic and density load driven by lower crustal flow in the LMS have led to asymmetric flexural subsidence in the foreland basin and lifting of the forebulge. Finally, based on the correspondence between zones of extremely high positive IGA and the presence of the Precambrian Pengguan-Baoxing complexes in the LMS, the first appearance of erosion gravels from the complexes in the Dayi Conglomerate layer of the Chengdu Basin suggest that positive IGA and lower crustal flow in the LMS took place at 3.6 Ma or slightly earlier.展开更多
The easternmost Tian Shan lies in eastern Xinjiang, Central Asia. The South Barkol basin fault(SBF) in the northern part of the easternmost Tian Shan is a major tectonic structure in this orogenic region. The late Q...The easternmost Tian Shan lies in eastern Xinjiang, Central Asia. The South Barkol basin fault(SBF) in the northern part of the easternmost Tian Shan is a major tectonic structure in this orogenic region. The late Quaternary activity, paleoseismology, and deformation characteristics of the fault provide important clues for understanding the tectonic process of the eastern Tian Shan orogen and implementing seismic mitigation. Through interpretation of high-resolution satellite images, unmanned aerial vehicle measurements, and detailed geological and geomorphic investigations, we suggest that the fault exhibits clear left-lateral slip along its western segment. Paleoseismic trenches dug near Xiongkuer reveal evidence of six large paleoearthquakes. The four latest paleoearthquakes were dated: the oldest event occurred at 4663 BC–3839 BC. Data on the horizontal offsets along the probable 1842 Barkol earthquake coseismic rupture suggest clear multiple relationships between cumulative offsets and possible ~4 m of coseismic left-lateral slip per event. From the cumulative offsets and 14 C sample ages, we suggest an average Holocene left-lateral slip rate of 2.4–2.8 mm/a on the SBF, accounting for ~80% of lateral deformation within the entire eastern Tian Shan fault system. This result is comparable with the shortening rate of 2–4 mm/a in the whole eastern Tian Shan, indicating an equal role of strike-slip tectonics and compressional tectonics in this orogen, and that the SBF may accommodate substantial lateral tectonic deformation.展开更多
Depending on the analysis of the coeval sedimentary geometry and subsidence mechanism in the Longmen Shan foreland basin, three models about the coupling relationship between Longmen Shan uplift and foreland basin sub...Depending on the analysis of the coeval sedimentary geometry and subsidence mechanism in the Longmen Shan foreland basin, three models about the coupling relationship between Longmen Shan uplift and foreland basin subsidence since the Indosinian have been proposed:(1) crustal shortening and its related wide wedge-shaped foreland basin,(2) crustal isostatic rebound and its related tabular foreland basin, and(3) lower crustal flow and its related narrow wedge-shaped foreland basin. Based on the narrow wedge-shaped foreland basin developed since 4 Ma, it is believed that the narrow crustal shortening and tectonic load driven by lower crustal flow is a primary driver for the present Longmen Shan uplift and the Wenchuan(Ms 8.0) earthquake.展开更多
Sichuan Basin is one of the uppermost petroliferous basins in China. It experienced three evolutionary phases which were marine carbonate platform (Ediacaran to Late Triassic), Indosinian-Yanshanian orogeny foreland...Sichuan Basin is one of the uppermost petroliferous basins in China. It experienced three evolutionary phases which were marine carbonate platform (Ediacaran to Late Triassic), Indosinian-Yanshanian orogeny foreland basin (Late Triassic to Late Cretaceous) and uplift and tectonic modification (Late Cretaceous to Quaternary). The present-day tectonics of the Sichuan Ba- sin and its periphery are characterized by three basic elements which are topography, basement type and surface structure, and two settings (plate margin and interior). Therefore, be subdivided into five units which have different structure and tectonic history. The basin contains five different sets of source rocks with thickness up to 2 500 m. These source rocks were well preserved due to the presence of Middel-Lower Triassic evaporites (〉-200 m) and thick terrestrial sediments filling in the Indosinian-Yanshanian foreland basin (〉3 000 m). The uplift and erosion since Late Cretaceous has significant influence on cross-strata migration and accumulation of oil and gas. The multi-phase evolution of the basin and its superimposed tectonic elements, good petroleum geologic conditions and diverse petroleum systems reveal its bright exploration prospects.展开更多
文摘The widespread Carboniferous KT-I dolomite in the eastern margin of the Pre-Caspian Basin is an important hydrocarbon reservoir. The dolomite lithology is dominated by crystalline dolomite. The δ18O values range from -6.71‰ to 2.45‰, and average 0.063‰, obviously larger than -2.5‰, indicating low-temperature dolomite of evaporation origin. Stable strontium isotope ratios (87Sr/86Sr) range from 0.70829 to 0.70875 and average 0.708365, very consistent with 87Sr/86Sr ratios in Carboniferous seawater. Chemical analysis of Ca and Mg elements shows that the dolomite has 9.1 mole% excess Ca or even higher before stabilization. The degree of order of dolomite is medium–slightly poor, varying in a range of 0.336-0.504 and averaging 0.417. It suggests that the dolomite formed under near-surface conditions. There are two models for the origin of the Carboniferous KT-I dolomite reservoir. These are 1) the evaporation concentration – weathering crust model and 2) the shoal facies – seepage reflux model. The former is mainly developed in restricted platforms – evaporate platforms of restricted marine deposition environments with a representation of dolomite associated with gypsum and mudstone. The latter mainly formed in platform edge shoals and intra-platform shoals and is controlled by dolomitization due to high salinity sea water influx from adjacent restricted sea or evaporate platform.
基金the Project of the National Natural Science Foudation of China (Grant No.41372114,41340005,41172162,40972083)
文摘We applied the material balance principle of the denudation volume and sedimentary flux to study the denudation-accumulation system between the Longmen Mountains (Mts.) and the foreland basin. The amount of sediment in each sedimentation stage of the basin was estimated to obtain the denudation volume, erosion thickness and deposit thickness since the Late Triassic Epoch, to enable us to recover the paleoelevation of the provenance and the sedimentary area. The results show the following: (1) Since the Late Triassic Epoch, the elevation of the surface of the Longmen Mts. has uplifted from 0 m to 2751 m, and the crust of the Longmen Mts. has uplifted by 9.8 km. Approximately 72% of the materials introduced have been denuded from the mountains. (2) It is difficult to recover the paleoelevation of each stage of the Longmen Mts. foreland basin quantitatively by the present-day techniques and data. (3) The formation of the Longmen Mts. foreland basin consisted of three stages of thrust belt tectonic load and three stages of thrust belt erosional unload. During tectonic loading stages (Late Triassic Epoch, Late Jurassic-Early Cretaceous, Late Cretaceous-Miocene), the average elevation of Longmen Mts. was lower (approximately 700-1700 m). During erosional unloading stages (Early and Middle Jurassic, Middle Cretaceous and Jiaguan, Late Cenozoic), the average elevation of Longmen Mts. was high at approximately 2000-2800m.
基金funded by the National Natural Science Foundation of China(Grant Nos.41372114,41502116,41340005,41172162,40972083,40841010)a research project of the National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Grant No.SK-0801)
文摘This study examines the relationship between high positive isostatic gravity anomalies (IGA), steep topography and lower crustal extrusion at the eastern margin of the Tibetan Plateau. IGA data has revealed uplift and extrusion of lower crustal flow in the Longmen Shan Mountains (the LMS). Firstly, The high positive IGA zone corresponds to the LMS orogenic belt. It is shown that abrupt changes in IGA correspond to zones of abrupt change of topography, crustal thickness and rock density along the LMS. Secondly, on the basis of the Airy isostasy theory, simulations and inversions of the positive IGA were conducted using three-dimensional bodies. The results indicated that the LMS lacks a mountain root, and that the top surface of the lower crust has been elevated by 11 km, leading to positive IGA, tectonic load and density load. Thirdly, according to Watts's flexural isostasy model, elastic deflection occurs, suggesting that the limited (i.e. narrow) tectonic and density load driven by lower crustal flow in the LMS have led to asymmetric flexural subsidence in the foreland basin and lifting of the forebulge. Finally, based on the correspondence between zones of extremely high positive IGA and the presence of the Precambrian Pengguan-Baoxing complexes in the LMS, the first appearance of erosion gravels from the complexes in the Dayi Conglomerate layer of the Chengdu Basin suggest that positive IGA and lower crustal flow in the LMS took place at 3.6 Ma or slightly earlier.
基金funded by foundation of seismic risk assessment of active faults,China Earthquake Administration(Grant no.1521044025)
文摘The easternmost Tian Shan lies in eastern Xinjiang, Central Asia. The South Barkol basin fault(SBF) in the northern part of the easternmost Tian Shan is a major tectonic structure in this orogenic region. The late Quaternary activity, paleoseismology, and deformation characteristics of the fault provide important clues for understanding the tectonic process of the eastern Tian Shan orogen and implementing seismic mitigation. Through interpretation of high-resolution satellite images, unmanned aerial vehicle measurements, and detailed geological and geomorphic investigations, we suggest that the fault exhibits clear left-lateral slip along its western segment. Paleoseismic trenches dug near Xiongkuer reveal evidence of six large paleoearthquakes. The four latest paleoearthquakes were dated: the oldest event occurred at 4663 BC–3839 BC. Data on the horizontal offsets along the probable 1842 Barkol earthquake coseismic rupture suggest clear multiple relationships between cumulative offsets and possible ~4 m of coseismic left-lateral slip per event. From the cumulative offsets and 14 C sample ages, we suggest an average Holocene left-lateral slip rate of 2.4–2.8 mm/a on the SBF, accounting for ~80% of lateral deformation within the entire eastern Tian Shan fault system. This result is comparable with the shortening rate of 2–4 mm/a in the whole eastern Tian Shan, indicating an equal role of strike-slip tectonics and compressional tectonics in this orogen, and that the SBF may accommodate substantial lateral tectonic deformation.
基金funded by China National Natural Science Foundation(No:41372114,41502116,41340005,40841010,40972083,41172162,and 41402159)geological survey from China Geological Survey(No:121201010000150004–08 and 12120115004501–01)the project of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(No:SK–0801)
文摘Depending on the analysis of the coeval sedimentary geometry and subsidence mechanism in the Longmen Shan foreland basin, three models about the coupling relationship between Longmen Shan uplift and foreland basin subsidence since the Indosinian have been proposed:(1) crustal shortening and its related wide wedge-shaped foreland basin,(2) crustal isostatic rebound and its related tabular foreland basin, and(3) lower crustal flow and its related narrow wedge-shaped foreland basin. Based on the narrow wedge-shaped foreland basin developed since 4 Ma, it is believed that the narrow crustal shortening and tectonic load driven by lower crustal flow is a primary driver for the present Longmen Shan uplift and the Wenchuan(Ms 8.0) earthquake.
基金supported by the National Basic Research Program of China (No. 2012CB214805)the National Natural Science Foundation of China (Nos. 41230313, 41402119, 2017JQ0025, 41472017, 41572111)
文摘Sichuan Basin is one of the uppermost petroliferous basins in China. It experienced three evolutionary phases which were marine carbonate platform (Ediacaran to Late Triassic), Indosinian-Yanshanian orogeny foreland basin (Late Triassic to Late Cretaceous) and uplift and tectonic modification (Late Cretaceous to Quaternary). The present-day tectonics of the Sichuan Ba- sin and its periphery are characterized by three basic elements which are topography, basement type and surface structure, and two settings (plate margin and interior). Therefore, be subdivided into five units which have different structure and tectonic history. The basin contains five different sets of source rocks with thickness up to 2 500 m. These source rocks were well preserved due to the presence of Middel-Lower Triassic evaporites (〉-200 m) and thick terrestrial sediments filling in the Indosinian-Yanshanian foreland basin (〉3 000 m). The uplift and erosion since Late Cretaceous has significant influence on cross-strata migration and accumulation of oil and gas. The multi-phase evolution of the basin and its superimposed tectonic elements, good petroleum geologic conditions and diverse petroleum systems reveal its bright exploration prospects.