Existing studies contend that latent heating(LH)will replace sensible heating(SH)to become the dominant factor affecting the development of the Tibetan Plateau vortex(TPV)after it moves off the Tibetan Plateau(TP).How...Existing studies contend that latent heating(LH)will replace sensible heating(SH)to become the dominant factor affecting the development of the Tibetan Plateau vortex(TPV)after it moves off the Tibetan Plateau(TP).However,in the process of the TPV moving off the TP requires that the airmass traverse the eastern slope of the Tibetan Plateau(ESTP)where the topography and diabatic heating(DH)conditions rapidly change.How LH gradually replaces SH to become the dominant factor in the development of the TPV over the ESTP is still not very clear.In this paper,an analysis of a typical case of a TPV with a long life history over the ESTP is performed by using multi-sourced meteorological data and model simulations.The results show that SH from the TP surface can change the TPV-associated precipitation distribution by temperature advection after the TPV moves off the TP.The LH can then directly promote the development of the TPV and has a certain guiding effect on the track of the TPV.The SH can control the active area of LH by changing the falling area of the TPV-associated precipitation,so it still plays a key role in the development and tracking of the TPV even though it has moved out of the main body of the TP.展开更多
In this study, a combination of satellite observations and reanalysis datasets is used to analyze the spatiotemporal distribution, classification and source of pollutants over the eastern slope of the Tibetan Plateau(...In this study, a combination of satellite observations and reanalysis datasets is used to analyze the spatiotemporal distribution, classification and source of pollutants over the eastern slope of the Tibetan Plateau(ESTP). The aerosol optical depth(AOD) over the ESTP is extremely large and even larger than some important industrialized regions and deserts. The main aerosol component over the ESTP is sulfate, followed by carbonaceous and dust aerosols. Local emissions related to human activity directly contribute to the accumulation of sulfate and carbonaceous aerosols over the Sichuan Basin. In addition, in spring, abundant carbonaceous aerosols emitted from forest, grassland and savanna fires in Southeast Asia can be transported by the prevailing southwesterly wind to southern China and the ESTP. The dust AOD over the ESTP peaks in spring because of the transport from the Taklimakan and Gobi deserts. Additionally, the high aerosol loading over the ESTP is also directly related to the meteorological background. Due to the special topography, the terrain-driven circulation can trap aerosols in the Sichuan Basin and these aerosols can climb along the ESTP due to the perennial updraft. The aerosol loading is lowest in summer because of effective wet deposition induced by the strong precipitation and better dispersion conditions due to the larger vertical temperature gradients and ascending air movement enhanced by the plateau heat pump effect. In contrast,the aerosol loading is greatest in winter. Abundant anthropogenic aerosols over the ESTP may generate some climatic and environmental risks and consequently greatly influence the downstream regions.展开更多
Based on the chemical and stable carbon isotopic composition of natural gas and light hydrocarbons, along with regional geological data, the genetic type, origin and migration of natural gases in the L lithologic gas ...Based on the chemical and stable carbon isotopic composition of natural gas and light hydrocarbons, along with regional geological data, the genetic type, origin and migration of natural gases in the L lithologic gas field, the eastern slope of Yinggehai Sag were investigated. The results show that these gases have a considerable variation in chemical composition, with 33.6%–91.5% hydrocarbon, 0.5%-62.2% CO2, and dryness coefficients ranging from 0.94 to 0.99. The alkane gases are characterized by δ13C1 values of -40.71‰--27.40‰,δ13C2 values of –27.27‰– –20.26‰, and the isoparaffin contents accounting for 55%–73% of the total C5–C7 light hydrocarbons. These data indicate that the natural gases belong to the coal-type gas and are mainly derived from the Miocene terrigenous organic-rich source rocks. When the CO2 contents are greater than 10%, the δ13CCO2 values are –9.04‰ to – 0.95‰ and the associated helium has a 3He/4He value of 7.78×10^–8, suggesting that the CO2 here is crustal origin and inorganic and mainly sourced from the thermal decomposition of calcareous mudstone and carbonate in deep strata. The gas migrated in three ways, i.e., migration of gas from the Miocene source rock to the reservoirs nearby;vertical migration of highly mature gas from deeper Meishan and Sanya Formations source rock through concealed faults;and lateral migration along permeable sandbodies. The relatively large pressure difference between the “source” and “reservoir” is the key driving force for the vertical and lateral migration of gas. Short-distance migration and effective “source - reservoir” match control the gas distribution.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42175002,42030611,42075013)the Natural Science Foundation of Sichuan,China(Grant No.2023NSFSC0242)the Innovation Team Fund of Southwest Regional Meteorological Center,China Meteorological Administration(Grant No.XNQYCXTD-202202)。
文摘Existing studies contend that latent heating(LH)will replace sensible heating(SH)to become the dominant factor affecting the development of the Tibetan Plateau vortex(TPV)after it moves off the Tibetan Plateau(TP).However,in the process of the TPV moving off the TP requires that the airmass traverse the eastern slope of the Tibetan Plateau(ESTP)where the topography and diabatic heating(DH)conditions rapidly change.How LH gradually replaces SH to become the dominant factor in the development of the TPV over the ESTP is still not very clear.In this paper,an analysis of a typical case of a TPV with a long life history over the ESTP is performed by using multi-sourced meteorological data and model simulations.The results show that SH from the TP surface can change the TPV-associated precipitation distribution by temperature advection after the TPV moves off the TP.The LH can then directly promote the development of the TPV and has a certain guiding effect on the track of the TPV.The SH can control the active area of LH by changing the falling area of the TPV-associated precipitation,so it still plays a key role in the development and tracking of the TPV even though it has moved out of the main body of the TP.
基金supported by the National Natural Science Foundation of China (Grant Nos. 91737101 and 91744311)supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA2006010301)
文摘In this study, a combination of satellite observations and reanalysis datasets is used to analyze the spatiotemporal distribution, classification and source of pollutants over the eastern slope of the Tibetan Plateau(ESTP). The aerosol optical depth(AOD) over the ESTP is extremely large and even larger than some important industrialized regions and deserts. The main aerosol component over the ESTP is sulfate, followed by carbonaceous and dust aerosols. Local emissions related to human activity directly contribute to the accumulation of sulfate and carbonaceous aerosols over the Sichuan Basin. In addition, in spring, abundant carbonaceous aerosols emitted from forest, grassland and savanna fires in Southeast Asia can be transported by the prevailing southwesterly wind to southern China and the ESTP. The dust AOD over the ESTP peaks in spring because of the transport from the Taklimakan and Gobi deserts. Additionally, the high aerosol loading over the ESTP is also directly related to the meteorological background. Due to the special topography, the terrain-driven circulation can trap aerosols in the Sichuan Basin and these aerosols can climb along the ESTP due to the perennial updraft. The aerosol loading is lowest in summer because of effective wet deposition induced by the strong precipitation and better dispersion conditions due to the larger vertical temperature gradients and ascending air movement enhanced by the plateau heat pump effect. In contrast,the aerosol loading is greatest in winter. Abundant anthropogenic aerosols over the ESTP may generate some climatic and environmental risks and consequently greatly influence the downstream regions.
基金Supported by the China National Science and Technology Major Project(2016ZX05024-005)
文摘Based on the chemical and stable carbon isotopic composition of natural gas and light hydrocarbons, along with regional geological data, the genetic type, origin and migration of natural gases in the L lithologic gas field, the eastern slope of Yinggehai Sag were investigated. The results show that these gases have a considerable variation in chemical composition, with 33.6%–91.5% hydrocarbon, 0.5%-62.2% CO2, and dryness coefficients ranging from 0.94 to 0.99. The alkane gases are characterized by δ13C1 values of -40.71‰--27.40‰,δ13C2 values of –27.27‰– –20.26‰, and the isoparaffin contents accounting for 55%–73% of the total C5–C7 light hydrocarbons. These data indicate that the natural gases belong to the coal-type gas and are mainly derived from the Miocene terrigenous organic-rich source rocks. When the CO2 contents are greater than 10%, the δ13CCO2 values are –9.04‰ to – 0.95‰ and the associated helium has a 3He/4He value of 7.78×10^–8, suggesting that the CO2 here is crustal origin and inorganic and mainly sourced from the thermal decomposition of calcareous mudstone and carbonate in deep strata. The gas migrated in three ways, i.e., migration of gas from the Miocene source rock to the reservoirs nearby;vertical migration of highly mature gas from deeper Meishan and Sanya Formations source rock through concealed faults;and lateral migration along permeable sandbodies. The relatively large pressure difference between the “source” and “reservoir” is the key driving force for the vertical and lateral migration of gas. Short-distance migration and effective “source - reservoir” match control the gas distribution.