With the evolving international situation,particularly the Ukraine crisis,NATO’s strategic focus has accelerated its shift toward the Asia-Pacific and cyberspace.Asia-Pacific countries,such as India,Singapore,and Tha...With the evolving international situation,particularly the Ukraine crisis,NATO’s strategic focus has accelerated its shift toward the Asia-Pacific and cyberspace.Asia-Pacific countries,such as India,Singapore,and Thailand,also seek to strengthen cooperation with NATO in cybersecurity.At the same time,the Ukraine crisis has played a catalytic role in accelerating the eastward expansion of NATO’s cybersecurity mechanism.The eastward expansion of NATO’s cybersecurity mechanism is an important means for NATO to implement cyber deterrence in the Asia-Pacific region,particularly the strategic containment of China.This has hurt the cybersecurity situation in the Asia-Pacific region and even the world,causing widespread concern in countries throughout the Asia-Pacific region about the deteriorating cybersecurity situation.Inf luenced by multiple factors,the eastward expansion of NATO’s network security mechanism has clear momentum.In the long run,however,the strategic intention of NATO’s eastward expansion does not fully align with the security needs of Asia-Pacific countries,resulting in uncertainty about further development in the future.展开更多
Luonan Basin, formed during Neo\|tectonic movements, is one of the small block basins in East Qinling Mountain. Three faults, Tieluzi Fault, Dajing\|Guojiayuan Fault and Beisi Fault bound it. The west part of the basi...Luonan Basin, formed during Neo\|tectonic movements, is one of the small block basins in East Qinling Mountain. Three faults, Tieluzi Fault, Dajing\|Guojiayuan Fault and Beisi Fault bound it. The west part of the basin is higher than the east part. The elevation, usually more than 1100meters in the west, decreases gradually to less than 800meters in the east. The Cenozoic deposit in Luonan Basin is thin in the west part and becomes increasingly thick towards the east part. The total thickness of both the Eogene and the Neogene is only more than 100meters at Dajing. At Duishan, a place close to Luonan county town, it is about 400meters, and at Gucheng, it becomes nearly 1750meters. The strata crop out in the west part of the basin, usually the Eogene and the Neogene, are older than those in the east part which are usually the Quaternary deposits. The pattern of the Cenozoic deposits in Luonan Basin is similar to that in Shangzhou Basin (Li Kaoshe, personal communication), a basin locating just to the south of Luonan Basin.展开更多
Based on researches made by the author in recent years, discussion is made of the quasi-40-day oscillation (QDO) nature and its characteristic propagation, with emphasis on the Southern Hemisphere mill-latitude quasi-...Based on researches made by the author in recent years, discussion is made of the quasi-40-day oscillation (QDO) nature and its characteristic propagation, with emphasis on the Southern Hemisphere mill-latitude quasi-periodic cold air forcing on the tropical atmosphere quasi-40-day oscillation along with its effect upon the Northern Hemisphere summer monsoon. It is proposed that the interaction between, or lateral coupling of, meridional circulation systems may serve as the mechanism of the oscillation propagation in a meridional direction.展开更多
In this paper, the influence of E1 Nino event on the Madden-Julian Oscillation (MJO) over the equatorial Pacific is stud- ied by using reanalysis data and relevant numerical simulation results. It is clearly shown t...In this paper, the influence of E1 Nino event on the Madden-Julian Oscillation (MJO) over the equatorial Pacific is stud- ied by using reanalysis data and relevant numerical simulation results. It is clearly shown that E1 Nino can reduce the intensity of MJO. The kinetic energy of MJO over the equatorial Pacific is stronger before the occurrence of the E1 Nino event, but it is reduced rapidly after E1 v event outbreak, and the weakened MJO even can continue to the next summer. The convection over the cen- tral-western Pacific is weakened in E1 Nino winter. The positive anomalous OLR over the central-western Pacific has opposite variation in E1 Nino winter comparing to the non-ENSO cases. The vertical structure of MJO also affected by E1 Nino event, so the opposite direction features of the geopotential height and the zonal wind in upper and lower level troposphere for the MJO are not remarkable in the E1 Nino winter and tend to be barotropic features. El Nino event also has an influence on the eastward propa- gation of the MJO too. During E1 Nino winter, the eastward propagation of the MJO is not so regular and unanimous and there exists some eastward propagation, which is faster than that in non-ENSO case. Dynamic analyses suggest that positive SSTA (El Nino case) affects the atmospheric thickness over the equatorial Pacific and then the excited atmospheric wave-CISK mode is weakened, so that the intensity of MJO is reduced; the combining of the barotropic unstable mode in the atmosphere excited by external forcing (SSTA) and the original MJO may be an important reason for the MJO vertical structure tending to be barotropic during the E1 Nino.展开更多
The dynamics of eastward shifting cyclonic vortices are investigated in terms of a barotropic primitive equation model, and six experiments are performed. Both the interaction of a cyclonic vortex with vorticity lumps...The dynamics of eastward shifting cyclonic vortices are investigated in terms of a barotropic primitive equation model, and six experiments are performed. Both the interaction of a cyclonic vortex with vorticity lumps and the interaction of the vortex with the shearing basic flow may induce the strengthening of the vortex in a short period, however, the vortex intensity still shows a general decreasing tendency over the whole integration time period. The interaction among the shearing basic flow, cyclonic vortex, and multiple vorticity lumps can change the tendency. The merging of the cyclonic vortex with vorticity lumps in the shearing basic flow of positive vorticity is directly responsible for the maintenance and development of the cyclonic vortex.展开更多
This paper analyzes various earthquake fault types, mechanism solutions, stress field as well as other geophysical data to study the crust movement in the Tibetan plateau and its tectonic implications. The results sho...This paper analyzes various earthquake fault types, mechanism solutions, stress field as well as other geophysical data to study the crust movement in the Tibetan plateau and its tectonic implications. The results show that a lot of normal faulting type earthquakes concentrate in the central Tibetan plateau. Many of them are nearly perfect normal fault events. The strikes of the fault planes of the normal faulting earthquakes are almost in the N-S direction based on the analyses of the equal area projection diagrams of fault plane solutions. It implies that the dislocation slip vectors of the normal faulting type events have quite great components in the E-W direction. The extension is probably an eastward extensional motion, mainly a tectonic active regime in the altitudes of the plateau. The tensional stress in the E-W or WNW-ESE direction predominates the earthquake occurrence in the normal event region of the central plateau. A number of thrust fault and strike-slip fault type earthquakes with strong compressive stress nearly in the NNE-SSW direction occurred on the edges of the plateau. The eastward extensional motion in the Tibetan plateau is attributable to the eastward movement of materials in the upper mantle based on_seismo-tomographic results. The eastward extensional motion in the Tibetan plateau may be related to the eastward extrusion of hotter mantle materials beneath the east boundary of the plateau. The northward motion of the Tibetan plateau shortened in the N-S direction probably encounters strong obstructions at the western and northern margins. Extensional motions from the relaxation of the topography and/or gravitational collapse in the altitudes of the plateau occur hardly in the N-S direction. The obstruction for the plateau to move eastward is rather weak.展开更多
Northward propagation in summer and eastward propagation in winter are two distinguished features of tropical intraseasonal oscillation (TISO) over the equatorial Indian Ocean. According to numerical modeling result...Northward propagation in summer and eastward propagation in winter are two distinguished features of tropical intraseasonal oscillation (TISO) over the equatorial Indian Ocean. According to numerical modeling results, under a global warming scenario, both propagations were intensified. The enhanced northward propagation in summer can be attributed to the enhanced atmosphere-ocean interaction and the strengthened mean southerly wind; and the intensified eastward propagation in winter is associated with the enhanced convection-wind coupling process and the strengthened equatorial Kevin wave. Future changes of TISO propagations need to be explored in more climate models.展开更多
Based on multiple datasets, correlation and composite analyses, and case studies, this paper investigated possible influences of the Indian Ocean dipole(IOD) mode on the eastward propagation of intraseasonal oscillati...Based on multiple datasets, correlation and composite analyses, and case studies, this paper investigated possible influences of the Indian Ocean dipole(IOD) mode on the eastward propagation of intraseasonal oscillation in the tropical atmosphere. The results showed that(1) the 30-60 day outgoing longwave radiation anomalies in the southeastern Indian Ocean and the 30-60 day 850-hPa zonal wind anomalies over the equatorial central Indian Ocean were significantly correlated with the IOD index;(2) during positive IOD years, the anomalously cold water in the southeastern Indian Ocean and the 850-hPa anomalous easterlies over the equatorial central Indian Ocean might act as barriers to the continuously eastward propagation of the intraseasonal convection, which interrupts the Madden-Julian oscillation(MJO) propagation in the eastern equatorial Indian Ocean and western Pacific; and(3) during negative IOD years, the anomalously warm water in the southeastern Indian Ocean and the low-level westerly anomalies over the equatorial central Indian Ocean favor the eastward movement of MJO.展开更多
The impact of tropical intraseasonal oscillations on the precipitation of Guangdong in Junes and its physical mechanism are analyzed using 30-yr(1979 to 2008), 86-station observational daily precipitation of Guangdong...The impact of tropical intraseasonal oscillations on the precipitation of Guangdong in Junes and its physical mechanism are analyzed using 30-yr(1979 to 2008), 86-station observational daily precipitation of Guangdong and daily atmospheric data from NCEP-DOE Reanalysis. It is found that during the annually first rainy season(April to June),the modulating effect of the activity of intraseasonal oscillations propagating eastward along the equator(MJO) on the June precipitation in Guangdong is different from that in other months. The most indicative effect of MJO on positive(negative) anomalous precipitation over the whole or most of the province is phase 3(phase 6) of strong MJO events in Junes. A Northwest Pacific subtropical high intensifies and extends westward during phase 3. Water vapor transporting along the edge of the subtropical high from Western Pacific enhances significantly the water vapor flux over Guangdong, resulting in the enhancement of the precipitation. The condition is reverse during phase 6. The mechanism for which the subtropical high intensifies and extends westward during phase 3 is related to the atmospheric response to the asymmetric heating over the eastern Indian Ocean. Analyses of two cases of sustained strong rainfall of Guangdong in June 2010 showed that both of them are closely linked with a MJO state which is both strong and in phase 3, besides the effect from a westerly trough. It is argued further that the MJO activity is indicative of strong rainfall of Guangdong in June. The results in the present work are helpful in developing strategies for forecasting severe rainfall in Guangdong and extending, combined with the outputs of dynamic forecast models, the period of forecasting validity.展开更多
Low frequency (LF) current (period】25 hour) variation at 5 stations in Jiaozhou Bay. Shijiousuo, and the central part of the Yellow Sea were studied by analyzing the observed long-period current data series in the st...Low frequency (LF) current (period】25 hour) variation at 5 stations in Jiaozhou Bay. Shijiousuo, and the central part of the Yellow Sea were studied by analyzing the observed long-period current data series in the study area.1) There are obvious periods of 3 and 5 days in the LF current spectra. The energy spectral value of LF current of a 5 day period is remarkably larger than that of a 3 day period. These periods reflect the correlations between the LF current variation and the LF water level variation.2) The feet that the 15-day period in the LF current spectra corresponds to the semi-monthly celestial tide period indicates that the tide-induced residual current is an important and most evident LF current component in the bay.3) The LF current spectral energy density in the northward direction is much larger than that in the eastward direction. This shows the frequency and strength of the wind field in the northward direction are evidently larger than that in the eastward direction.展开更多
The capability of the current version of the air-sea coupled climate model, the Flexible Global Ocean- Atmosphere-Land System model, Spectral Version 2 (FGOALS-s2), in simulating the boreal summer in- traseasonal os...The capability of the current version of the air-sea coupled climate model, the Flexible Global Ocean- Atmosphere-Land System model, Spectral Version 2 (FGOALS-s2), in simulating the boreal summer in- traseasonal oscillation (ISO) over the south Asian monsoon (SAM) region is diagnosed, in terms of dominant period, propagation direction, and vertical structure. Results show that the coupled model can reasonably simulate the main features of observed ISO propagation compared to the chosen AGCM. These features in- clude the eastward movement of intraseasonal 850-hPa zonal wind over the Arabian Sea and Bay of Bengal, the vertical structure in active phases, and the realistic phase relationship between ISO and underlying SST. However, the eastward propagation cannot be reproduced in the uncoupled model. This suggests that air- sea interaction is important in generating intraseasonal variability over the SAM region. Nevertheless, some deficiencies remain in the coupled model, which may relate to physical processes depicted by the cumulus parameterization and PBL schemes within its atmospheric component.展开更多
The aim of this study was to understand the cause of Madden–Julian oscillation(MJO)bias in the High Resolution AtmosphericModel(HiRAM)driven by observed SST through process-oriented diagnosis.Wavenumber-frequency pow...The aim of this study was to understand the cause of Madden–Julian oscillation(MJO)bias in the High Resolution AtmosphericModel(HiRAM)driven by observed SST through process-oriented diagnosis.Wavenumber-frequency power spectrum and composite analyses indicate that HiRAM underestimates the spectral amplitude over theMJO band and mainly produces non-propagating rather than eastward-propagating intraseasonal rainfall anomalies,as observed.Column-integrated moist static energy(MSE)budget analysis is conducted to understand the MJO propagation bias in the simulation.It is found that the bias is due to the lack of a zonally asymmetric distribution of the MSE tendency anomaly in respect to the MJO convective center,which is mainly attributable to the bias in vertical MSE advection and surface turbulent flux.Further analysis suggests that it is the unrealistic simulation of MJO vertical circulation anomalies in the upper troposphere as well as overestimation of the Rossby wave response that results in the bias.展开更多
The authors investigate the characteristics of propagation and the influence on tropical precipitation of 9–29-day intraseasonal variation over midlatitude East Asia during boreal winter, and find that the intraseaso...The authors investigate the characteristics of propagation and the influence on tropical precipitation of 9–29-day intraseasonal variation over midlatitude East Asia during boreal winter, and find that the intraseasonal wind signal can propagate both eastward and southward. In the case of eastward propagation, the intraseasonal wind signal is mainly confined to the midlatitudes, featuring eastward migration of anomalous cyclones and anticyclones. In the case of southward propagation, intraseasonal meridional wind perturbations may extend from the mid to the low latitudes, and even the equatorial region. The accompanying wind convergence/divergence induces anomalous precipitation in the near-equatorial regions, forming a north–south dipole precipitation anomaly pattern between the southern South China Sea and the eastern China– Japan region. An anomalous meridional overturning circulation plays an important role in linking tropical and midlatitude intraseasonal wind and precipitation variations.展开更多
The Indo-Pacific strategy is an inevitable outcome of the eastward shift of the US foreign strategic focus,which has gone through three US administrations of Obama,Trump and Biden,either Democratic or Republican,not o...The Indo-Pacific strategy is an inevitable outcome of the eastward shift of the US foreign strategic focus,which has gone through three US administrations of Obama,Trump and Biden,either Democratic or Republican,not only showing strong continuity,but also gradually exhibiting the characteristics as a grand strategy.展开更多
At 8:30 on October 27, the first international flight from Shanghai to Singapore MU576 took off at Pudong Airport. Thus,all international flights and those to Hong Kong and Macao were all moved to Pudong Airport. Besi...At 8:30 on October 27, the first international flight from Shanghai to Singapore MU576 took off at Pudong Airport. Thus,all international flights and those to Hong Kong and Macao were all moved to Pudong Airport. Besides internationalflights and Hong Kong and Macao flights, the eastward moving also cover some domestic flights, namely flights fromSanya, Haikou, Guangzhou, Shenzhen, Zhuhai, Qingdao, Yantai, Weihai, Weifang and so on in Northwest China, Mid-South China,and East China to Shanghai. After the eastward moving, the flight distribution at two airports in Shanghai changed greatly.展开更多
The“Eastward Migration Festival”is an emerging festival initiated by Yugur scholars,with the collective participation of the masses,and held in some areas of the Yugur,now held four times.As it carries the collectiv...The“Eastward Migration Festival”is an emerging festival initiated by Yugur scholars,with the collective participation of the masses,and held in some areas of the Yugur,now held four times.As it carries the collective heritage of the Yugur people,the“Eastward Migration Festival”draws on Pierre Nora’s theory of“Les Lieux de Memoire”,and explains why the“Eastward Migration Festival”activity has become the“Les Lieux de Memoire”of Yugur society from three aspects:history,symbol and narrative.展开更多
A calculation formula on spherical pattern of Qinghai-Tibet plateau moving model is established. Tibet massif moves norward by east in speed of 28 mm/a, Ganshu-Qinghai massif moves to northeast in speed of 15 mm/a, Qo...A calculation formula on spherical pattern of Qinghai-Tibet plateau moving model is established. Tibet massif moves norward by east in speed of 28 mm/a, Ganshu-Qinghai massif moves to northeast in speed of 15 mm/a, Qomolangma Feng moves northward by a few east in speed of 35 -42 mm/a. The low latitude perimeter is longer than the high latitude perimeter. When the Tibet massif moves northward, its latitude perimeter must be contracted and the Tibet massif must move eastward by Cofiolis. Cofiolis force is inertial in earth rotation. It makes the fall body turning to east and the rising block turning westward. In the Northern Hemisphere, it makes the northward body turning to east and the southward block turning to west. This is the reason why the tectonic zones of western Pacific are different from those of eastern Pacific.展开更多
We recognized 6 sets of reflecting P- and S-wave events from Moho and other interfaces within the crust, respectively, with the wide-angle seismic data acquired from 510 km-long Selincuo-Ya'anduo profile in the no...We recognized 6 sets of reflecting P- and S-wave events from Moho and other interfaces within the crust, respectively, with the wide-angle seismic data acquired from 510 km-long Selincuo-Ya'anduo profile in the northern Tibet, fitted the observed events with forward modeling, and interpreted crustal structure of P- and S-wave velocities and Poisson's ratio under the profile. The results demonstrate that the crustal structure between Yarlungzangbo and Bangong-Nujiang sutures changes abruptly, and the crust is the thickest at the middle part of the profile with thickness of 80 km or more. The 'down-bowing' Moho is the striking feature for the crustal variation along the west-east direction. The Moho uplifts with steps, and the uplifting rate westward is greater than that eastward. The heterogeneity of P- and S-wave velocities exists both vertically and horizontally, and one lower velocity layer (LVL) exists with the depth range of 27-34 km and the thickness range of 5-7 km. For the upper crust, Poisson's ratio is the lowest at the middle part of the profile; for the lower crust, the Poisson's ratio at the east segment is lower than that at west segment, which means that the crustal rigidity for the upper crust is different from the lower crust, and the lower crust under the east segment of the profile is more ductile. We infer that the substance in the lower crust endured eastward flow along with the collision between Eurasian and Indian plates, and the 'down-bowing' Moho is attributable to the multi-phase E-W tectonic processes.展开更多
The Madden-Julian oscillation (MJO) is a dominant atmospheric low-frequency mode in the tropics. In this review article, recent progress in understanding the MJO dynamics is described. Firstly, the fundamental physi...The Madden-Julian oscillation (MJO) is a dominant atmospheric low-frequency mode in the tropics. In this review article, recent progress in understanding the MJO dynamics is described. Firstly, the fundamental physical processes responsible for MJO eastward phase propagation are discussed. Next, a recent modeling result to address why MJO prefers a planetary zonal scale is presented. The effect of the seasonal mean state on distinctive propagation characteristics between northern winter and summer is discussed in a theoretical framework. Then, the observed precursor signals and the physical mechanism of MJO initiation in the western equatorial Indian Ocean are further discussed. Finally, scale interactions between MJO and higher- frequency eddies are delineated.展开更多
The Ailaoshan-Red River(ASRR) shear zone in SW China represents an important discontinuity believed to have accommodated eastward extrusion of the Tibetan Plateau in response to the collision of the Indian and Euras...The Ailaoshan-Red River(ASRR) shear zone in SW China represents an important discontinuity believed to have accommodated eastward extrusion of the Tibetan Plateau in response to the collision of the Indian and Eurasian plates. The onset timing and duration of the ASRR sinistral strike-slip shearing have been hotly disputed. In this paper we present new zircon LA-ICP-MS U-Pb geochronological data from six syntectonic granitic mylonite and leucosomes samples from the ASRR shear zone. Our data reveal a metamorphic age of ~40 Ma, most likely suggesting the maximum age of the shearing initiation. Rocks showing syn-kinematic signatures yield crystallization ages of 38–22 Ma, with inherited components ranging from 716 to 108 Ma. These results, together with existing geological and geochronological data, indicate that the sinistral shearing along the ASRR zone probably began at 40 Ma, mainly activated at 29–22 Ma and lasted at least to ~22 Ma. Our data suggest a continuous extrusion between the Indochina and South China blocks during ~35–17 Ma. The ASRR sinistral shearing has accommodated large scale eastward displacement of the southeastern Tibetan syntaxis, and is likely responsible for the opening of the South China Sea.展开更多
文摘With the evolving international situation,particularly the Ukraine crisis,NATO’s strategic focus has accelerated its shift toward the Asia-Pacific and cyberspace.Asia-Pacific countries,such as India,Singapore,and Thailand,also seek to strengthen cooperation with NATO in cybersecurity.At the same time,the Ukraine crisis has played a catalytic role in accelerating the eastward expansion of NATO’s cybersecurity mechanism.The eastward expansion of NATO’s cybersecurity mechanism is an important means for NATO to implement cyber deterrence in the Asia-Pacific region,particularly the strategic containment of China.This has hurt the cybersecurity situation in the Asia-Pacific region and even the world,causing widespread concern in countries throughout the Asia-Pacific region about the deteriorating cybersecurity situation.Inf luenced by multiple factors,the eastward expansion of NATO’s network security mechanism has clear momentum.In the long run,however,the strategic intention of NATO’s eastward expansion does not fully align with the security needs of Asia-Pacific countries,resulting in uncertainty about further development in the future.
文摘Luonan Basin, formed during Neo\|tectonic movements, is one of the small block basins in East Qinling Mountain. Three faults, Tieluzi Fault, Dajing\|Guojiayuan Fault and Beisi Fault bound it. The west part of the basin is higher than the east part. The elevation, usually more than 1100meters in the west, decreases gradually to less than 800meters in the east. The Cenozoic deposit in Luonan Basin is thin in the west part and becomes increasingly thick towards the east part. The total thickness of both the Eogene and the Neogene is only more than 100meters at Dajing. At Duishan, a place close to Luonan county town, it is about 400meters, and at Gucheng, it becomes nearly 1750meters. The strata crop out in the west part of the basin, usually the Eogene and the Neogene, are older than those in the east part which are usually the Quaternary deposits. The pattern of the Cenozoic deposits in Luonan Basin is similar to that in Shangzhou Basin (Li Kaoshe, personal communication), a basin locating just to the south of Luonan Basin.
文摘Based on researches made by the author in recent years, discussion is made of the quasi-40-day oscillation (QDO) nature and its characteristic propagation, with emphasis on the Southern Hemisphere mill-latitude quasi-periodic cold air forcing on the tropical atmosphere quasi-40-day oscillation along with its effect upon the Northern Hemisphere summer monsoon. It is proposed that the interaction between, or lateral coupling of, meridional circulation systems may serve as the mechanism of the oscillation propagation in a meridional direction.
基金supported by the National ‘973’ Programme (No. 2013CB956203)the National Natural Science Foundation of China (No. 41275086)
文摘In this paper, the influence of E1 Nino event on the Madden-Julian Oscillation (MJO) over the equatorial Pacific is stud- ied by using reanalysis data and relevant numerical simulation results. It is clearly shown that E1 Nino can reduce the intensity of MJO. The kinetic energy of MJO over the equatorial Pacific is stronger before the occurrence of the E1 Nino event, but it is reduced rapidly after E1 v event outbreak, and the weakened MJO even can continue to the next summer. The convection over the cen- tral-western Pacific is weakened in E1 Nino winter. The positive anomalous OLR over the central-western Pacific has opposite variation in E1 Nino winter comparing to the non-ENSO cases. The vertical structure of MJO also affected by E1 Nino event, so the opposite direction features of the geopotential height and the zonal wind in upper and lower level troposphere for the MJO are not remarkable in the E1 Nino winter and tend to be barotropic features. El Nino event also has an influence on the eastward propa- gation of the MJO too. During E1 Nino winter, the eastward propagation of the MJO is not so regular and unanimous and there exists some eastward propagation, which is faster than that in non-ENSO case. Dynamic analyses suggest that positive SSTA (El Nino case) affects the atmospheric thickness over the equatorial Pacific and then the excited atmospheric wave-CISK mode is weakened, so that the intensity of MJO is reduced; the combining of the barotropic unstable mode in the atmosphere excited by external forcing (SSTA) and the original MJO may be an important reason for the MJO vertical structure tending to be barotropic during the E1 Nino.
基金the National Natural Science Foundation under Grant No.49775263the project of the Tibetan Plateau Experiment(TIPEX)of Atmospheric Science and the 973 Project onheavy rain in China.
文摘The dynamics of eastward shifting cyclonic vortices are investigated in terms of a barotropic primitive equation model, and six experiments are performed. Both the interaction of a cyclonic vortex with vorticity lumps and the interaction of the vortex with the shearing basic flow may induce the strengthening of the vortex in a short period, however, the vortex intensity still shows a general decreasing tendency over the whole integration time period. The interaction among the shearing basic flow, cyclonic vortex, and multiple vorticity lumps can change the tendency. The merging of the cyclonic vortex with vorticity lumps in the shearing basic flow of positive vorticity is directly responsible for the maintenance and development of the cyclonic vortex.
基金supported by the Natural Science Foundation of China (No. 40674026)Commonweal Special Science Foundation of China (Grant No. 200811037)
文摘This paper analyzes various earthquake fault types, mechanism solutions, stress field as well as other geophysical data to study the crust movement in the Tibetan plateau and its tectonic implications. The results show that a lot of normal faulting type earthquakes concentrate in the central Tibetan plateau. Many of them are nearly perfect normal fault events. The strikes of the fault planes of the normal faulting earthquakes are almost in the N-S direction based on the analyses of the equal area projection diagrams of fault plane solutions. It implies that the dislocation slip vectors of the normal faulting type events have quite great components in the E-W direction. The extension is probably an eastward extensional motion, mainly a tectonic active regime in the altitudes of the plateau. The tensional stress in the E-W or WNW-ESE direction predominates the earthquake occurrence in the normal event region of the central plateau. A number of thrust fault and strike-slip fault type earthquakes with strong compressive stress nearly in the NNE-SSW direction occurred on the edges of the plateau. The eastward extensional motion in the Tibetan plateau is attributable to the eastward movement of materials in the upper mantle based on_seismo-tomographic results. The eastward extensional motion in the Tibetan plateau may be related to the eastward extrusion of hotter mantle materials beneath the east boundary of the plateau. The northward motion of the Tibetan plateau shortened in the N-S direction probably encounters strong obstructions at the western and northern margins. Extensional motions from the relaxation of the topography and/or gravitational collapse in the altitudes of the plateau occur hardly in the N-S direction. The obstruction for the plateau to move eastward is rather weak.
基金supported by the "973" projects (Grant Nos. 2012CB417203,2012CB955400,and 2013CB955803) "863" project (Grant No.2010AA012305)NSFC (Grant Nos. 41005036 and 41023002)
文摘Northward propagation in summer and eastward propagation in winter are two distinguished features of tropical intraseasonal oscillation (TISO) over the equatorial Indian Ocean. According to numerical modeling results, under a global warming scenario, both propagations were intensified. The enhanced northward propagation in summer can be attributed to the enhanced atmosphere-ocean interaction and the strengthened mean southerly wind; and the intensified eastward propagation in winter is associated with the enhanced convection-wind coupling process and the strengthened equatorial Kevin wave. Future changes of TISO propagations need to be explored in more climate models.
基金National Science foundation of China(41005038)Chinese Public Sector(Meteorology)Research and Special Project(GYHY200906016)National Key Technology Research and Development Program of the Ministry of Science and Technology of China(2009BAC51B01,2009BAC51B02)
文摘Based on multiple datasets, correlation and composite analyses, and case studies, this paper investigated possible influences of the Indian Ocean dipole(IOD) mode on the eastward propagation of intraseasonal oscillation in the tropical atmosphere. The results showed that(1) the 30-60 day outgoing longwave radiation anomalies in the southeastern Indian Ocean and the 30-60 day 850-hPa zonal wind anomalies over the equatorial central Indian Ocean were significantly correlated with the IOD index;(2) during positive IOD years, the anomalously cold water in the southeastern Indian Ocean and the 850-hPa anomalous easterlies over the equatorial central Indian Ocean might act as barriers to the continuously eastward propagation of the intraseasonal convection, which interrupts the Madden-Julian oscillation(MJO) propagation in the eastern equatorial Indian Ocean and western Pacific; and(3) during negative IOD years, the anomalously warm water in the southeastern Indian Ocean and the low-level westerly anomalies over the equatorial central Indian Ocean favor the eastward movement of MJO.
基金Key National Science Research Program(2014CB953901)Science and Technology Planning Project fo Guangdong Province(2012A061400012)+1 种基金Natural Science Foundation of China(41575043,41205069)Project for China Meteorological Administration(GYHY201406009)
文摘The impact of tropical intraseasonal oscillations on the precipitation of Guangdong in Junes and its physical mechanism are analyzed using 30-yr(1979 to 2008), 86-station observational daily precipitation of Guangdong and daily atmospheric data from NCEP-DOE Reanalysis. It is found that during the annually first rainy season(April to June),the modulating effect of the activity of intraseasonal oscillations propagating eastward along the equator(MJO) on the June precipitation in Guangdong is different from that in other months. The most indicative effect of MJO on positive(negative) anomalous precipitation over the whole or most of the province is phase 3(phase 6) of strong MJO events in Junes. A Northwest Pacific subtropical high intensifies and extends westward during phase 3. Water vapor transporting along the edge of the subtropical high from Western Pacific enhances significantly the water vapor flux over Guangdong, resulting in the enhancement of the precipitation. The condition is reverse during phase 6. The mechanism for which the subtropical high intensifies and extends westward during phase 3 is related to the atmospheric response to the asymmetric heating over the eastern Indian Ocean. Analyses of two cases of sustained strong rainfall of Guangdong in June 2010 showed that both of them are closely linked with a MJO state which is both strong and in phase 3, besides the effect from a westerly trough. It is argued further that the MJO activity is indicative of strong rainfall of Guangdong in June. The results in the present work are helpful in developing strategies for forecasting severe rainfall in Guangdong and extending, combined with the outputs of dynamic forecast models, the period of forecasting validity.
文摘Low frequency (LF) current (period】25 hour) variation at 5 stations in Jiaozhou Bay. Shijiousuo, and the central part of the Yellow Sea were studied by analyzing the observed long-period current data series in the study area.1) There are obvious periods of 3 and 5 days in the LF current spectra. The energy spectral value of LF current of a 5 day period is remarkably larger than that of a 3 day period. These periods reflect the correlations between the LF current variation and the LF water level variation.2) The feet that the 15-day period in the LF current spectra corresponds to the semi-monthly celestial tide period indicates that the tide-induced residual current is an important and most evident LF current component in the bay.3) The LF current spectral energy density in the northward direction is much larger than that in the eastward direction. This shows the frequency and strength of the wind field in the northward direction are evidently larger than that in the eastward direction.
基金supported by the"Strategic Priority Research Program-Climate Change:Carbon Budget and Related Issue"of the Chinese Academy of Sciences(Grant No.XDA-05110303)the Chinese Ministry of Science and Technology(Grant Nos.2010CB951703 and 2009CB421403)
文摘The capability of the current version of the air-sea coupled climate model, the Flexible Global Ocean- Atmosphere-Land System model, Spectral Version 2 (FGOALS-s2), in simulating the boreal summer in- traseasonal oscillation (ISO) over the south Asian monsoon (SAM) region is diagnosed, in terms of dominant period, propagation direction, and vertical structure. Results show that the coupled model can reasonably simulate the main features of observed ISO propagation compared to the chosen AGCM. These features in- clude the eastward movement of intraseasonal 850-hPa zonal wind over the Arabian Sea and Bay of Bengal, the vertical structure in active phases, and the realistic phase relationship between ISO and underlying SST. However, the eastward propagation cannot be reproduced in the uncoupled model. This suggests that air- sea interaction is important in generating intraseasonal variability over the SAM region. Nevertheless, some deficiencies remain in the coupled model, which may relate to physical processes depicted by the cumulus parameterization and PBL schemes within its atmospheric component.
基金This work was supported by the National Key Research and Development Program on Monitoring,Early Warning and Prevention of Major Natural Disaster[Grant No.2019YFC1510004]the National Natural Science Foundation of China[Grant Nos.41975108 and 42105022]+2 种基金NOAA[Grant No.NA18OAR4310298]the Natural Science Foundation of Jiangsu[Grant No.BK20190781]the National Natural Science Foundation of China–Shandong Joint Fund for Marine Science Research Centers[Grant No.U1606405].
文摘The aim of this study was to understand the cause of Madden–Julian oscillation(MJO)bias in the High Resolution AtmosphericModel(HiRAM)driven by observed SST through process-oriented diagnosis.Wavenumber-frequency power spectrum and composite analyses indicate that HiRAM underestimates the spectral amplitude over theMJO band and mainly produces non-propagating rather than eastward-propagating intraseasonal rainfall anomalies,as observed.Column-integrated moist static energy(MSE)budget analysis is conducted to understand the MJO propagation bias in the simulation.It is found that the bias is due to the lack of a zonally asymmetric distribution of the MSE tendency anomaly in respect to the MJO convective center,which is mainly attributable to the bias in vertical MSE advection and surface turbulent flux.Further analysis suggests that it is the unrealistic simulation of MJO vertical circulation anomalies in the upper troposphere as well as overestimation of the Rossby wave response that results in the bias.
基金supported by the National Natural Science Foundation of China [grant numbers 41530425,41721004,41475081,and 41775080]
文摘The authors investigate the characteristics of propagation and the influence on tropical precipitation of 9–29-day intraseasonal variation over midlatitude East Asia during boreal winter, and find that the intraseasonal wind signal can propagate both eastward and southward. In the case of eastward propagation, the intraseasonal wind signal is mainly confined to the midlatitudes, featuring eastward migration of anomalous cyclones and anticyclones. In the case of southward propagation, intraseasonal meridional wind perturbations may extend from the mid to the low latitudes, and even the equatorial region. The accompanying wind convergence/divergence induces anomalous precipitation in the near-equatorial regions, forming a north–south dipole precipitation anomaly pattern between the southern South China Sea and the eastern China– Japan region. An anomalous meridional overturning circulation plays an important role in linking tropical and midlatitude intraseasonal wind and precipitation variations.
文摘The Indo-Pacific strategy is an inevitable outcome of the eastward shift of the US foreign strategic focus,which has gone through three US administrations of Obama,Trump and Biden,either Democratic or Republican,not only showing strong continuity,but also gradually exhibiting the characteristics as a grand strategy.
文摘At 8:30 on October 27, the first international flight from Shanghai to Singapore MU576 took off at Pudong Airport. Thus,all international flights and those to Hong Kong and Macao were all moved to Pudong Airport. Besides internationalflights and Hong Kong and Macao flights, the eastward moving also cover some domestic flights, namely flights fromSanya, Haikou, Guangzhou, Shenzhen, Zhuhai, Qingdao, Yantai, Weihai, Weifang and so on in Northwest China, Mid-South China,and East China to Shanghai. After the eastward moving, the flight distribution at two airports in Shanghai changed greatly.
基金This essay is an achievement of the project“Graduate Research and Innovation Project”(Yxm 2019002)funded by Northwest Minzu University,China。
文摘The“Eastward Migration Festival”is an emerging festival initiated by Yugur scholars,with the collective participation of the masses,and held in some areas of the Yugur,now held four times.As it carries the collective heritage of the Yugur people,the“Eastward Migration Festival”draws on Pierre Nora’s theory of“Les Lieux de Memoire”,and explains why the“Eastward Migration Festival”activity has become the“Les Lieux de Memoire”of Yugur society from three aspects:history,symbol and narrative.
文摘A calculation formula on spherical pattern of Qinghai-Tibet plateau moving model is established. Tibet massif moves norward by east in speed of 28 mm/a, Ganshu-Qinghai massif moves to northeast in speed of 15 mm/a, Qomolangma Feng moves northward by a few east in speed of 35 -42 mm/a. The low latitude perimeter is longer than the high latitude perimeter. When the Tibet massif moves northward, its latitude perimeter must be contracted and the Tibet massif must move eastward by Cofiolis. Cofiolis force is inertial in earth rotation. It makes the fall body turning to east and the rising block turning westward. In the Northern Hemisphere, it makes the northward body turning to east and the southward block turning to west. This is the reason why the tectonic zones of western Pacific are different from those of eastern Pacific.
基金The first author gratefully acknowledges the financial support of the Outstanding Youth Scientist Project of the National Natural Science Foundation of China (Grant No. 4985108), Tibet Project from Resources and Environment Bureau of the Chinese Ac
文摘We recognized 6 sets of reflecting P- and S-wave events from Moho and other interfaces within the crust, respectively, with the wide-angle seismic data acquired from 510 km-long Selincuo-Ya'anduo profile in the northern Tibet, fitted the observed events with forward modeling, and interpreted crustal structure of P- and S-wave velocities and Poisson's ratio under the profile. The results demonstrate that the crustal structure between Yarlungzangbo and Bangong-Nujiang sutures changes abruptly, and the crust is the thickest at the middle part of the profile with thickness of 80 km or more. The 'down-bowing' Moho is the striking feature for the crustal variation along the west-east direction. The Moho uplifts with steps, and the uplifting rate westward is greater than that eastward. The heterogeneity of P- and S-wave velocities exists both vertically and horizontally, and one lower velocity layer (LVL) exists with the depth range of 27-34 km and the thickness range of 5-7 km. For the upper crust, Poisson's ratio is the lowest at the middle part of the profile; for the lower crust, the Poisson's ratio at the east segment is lower than that at west segment, which means that the crustal rigidity for the upper crust is different from the lower crust, and the lower crust under the east segment of the profile is more ductile. We infer that the substance in the lower crust endured eastward flow along with the collision between Eurasian and Indian plates, and the 'down-bowing' Moho is attributable to the multi-phase E-W tectonic processes.
基金Supported by the United States National Science Foundation(AGS-1106536)Office of Naval Research(N00014-1210450)+1 种基金China National Natural Science Foundation(41375095)China Meteorological Administration Special Public Welfare Research Fund(GYHY201306032)
文摘The Madden-Julian oscillation (MJO) is a dominant atmospheric low-frequency mode in the tropics. In this review article, recent progress in understanding the MJO dynamics is described. Firstly, the fundamental physical processes responsible for MJO eastward phase propagation are discussed. Next, a recent modeling result to address why MJO prefers a planetary zonal scale is presented. The effect of the seasonal mean state on distinctive propagation characteristics between northern winter and summer is discussed in a theoretical framework. Then, the observed precursor signals and the physical mechanism of MJO initiation in the western equatorial Indian Ocean are further discussed. Finally, scale interactions between MJO and higher- frequency eddies are delineated.
基金Supported by the National Basic Research Program of China(No.2014CB440901)the China National Natural Science Foundation(No.41190073)the Fundamental Research Funds for the Central Universities to SYSU
文摘The Ailaoshan-Red River(ASRR) shear zone in SW China represents an important discontinuity believed to have accommodated eastward extrusion of the Tibetan Plateau in response to the collision of the Indian and Eurasian plates. The onset timing and duration of the ASRR sinistral strike-slip shearing have been hotly disputed. In this paper we present new zircon LA-ICP-MS U-Pb geochronological data from six syntectonic granitic mylonite and leucosomes samples from the ASRR shear zone. Our data reveal a metamorphic age of ~40 Ma, most likely suggesting the maximum age of the shearing initiation. Rocks showing syn-kinematic signatures yield crystallization ages of 38–22 Ma, with inherited components ranging from 716 to 108 Ma. These results, together with existing geological and geochronological data, indicate that the sinistral shearing along the ASRR zone probably began at 40 Ma, mainly activated at 29–22 Ma and lasted at least to ~22 Ma. Our data suggest a continuous extrusion between the Indochina and South China blocks during ~35–17 Ma. The ASRR sinistral shearing has accommodated large scale eastward displacement of the southeastern Tibetan syntaxis, and is likely responsible for the opening of the South China Sea.