Evacuated Tube Transport Technologies (ET3) offers the potential for more than an order of magnitude improvement in transportation efficiency, speed, cost, and effectiveness. An ET3 network may be optimized to susta...Evacuated Tube Transport Technologies (ET3) offers the potential for more than an order of magnitude improvement in transportation efficiency, speed, cost, and effectiveness. An ET3 network may be optimized to sustainably displace most global transportation by car, ship, truck, train, and jet aircraft. To do this, ET3 standards should adhere to certain key principals: maximum value through efficiency, reliability, and simplicity; equal consideration for passenger and cargo loads; optimum size; high speed/high frequency operation; demand oriented; random accessibility; scalability; high granularity; automated control; full speed passive switching; open standards of implementation; and maximum use of existing capacities, materials, and processes.展开更多
In this work, we consider a specific problem of optimal planning of maritime transportation of multiproduct cargo by ships of one (so-called "corporate strategy") or several (so-called "partially corporate strat...In this work, we consider a specific problem of optimal planning of maritime transportation of multiproduct cargo by ships of one (so-called "corporate strategy") or several (so-called "partially corporate strategy") companies: the core of the problem consists of the existence of the network of intermediate seaports (i.e., transitional seaports), where for every ship arrived the cargo handling is done, and which are situated between the starting and the finishing seaports. In this work, there are mathematical models built from scratch in the form of multi-criterion optimization problem; according to the properties of the criteria and structure of the feasible solution set; are formulated different optimality conditions; are analysed different approaches for finding effective solutions (i.e., Pareto optimal solutions) and for check of the given solutions' effectiveness. In addition, in this work, there is considered and analysed well-known method of contraction of the Pareto boundary (goal attainment method of Gembicki), then, it is used for reducing the built models to a one-criterion problem of linear programming.展开更多
The CTB Water Wall project is a maximal product life cycle utilization concept study by members of the space architecture design community.Its function is to demonstrate a human space activity Cargo Transport Bag(CTB)...The CTB Water Wall project is a maximal product life cycle utilization concept study by members of the space architecture design community.Its function is to demonstrate a human space activity Cargo Transport Bag(CTB)that becomes a primary water recycling membrane element after delivery of cargo,and then a permanent architectural building block for sustainable space habitation after its use in water treatment is complete.As such,it is intended as an experiment in radical life cycle product optimization in an extremely mass-constrained application environment(human space operations).It also introduces some fundamentally interesting concepts in architectural use of waste materials in extreme environments.Finally,it is in some ways a simple,tactile and visual demonstration of how far sustainable product design can be taken,if the motivation and technical justification are present.展开更多
This paper investigates the sources of goods being shipped through the Arctic passages, and trade generated in the Arc- tic, including oil and gas exploitation. Furthermore, it assesses the present situation for marit...This paper investigates the sources of goods being shipped through the Arctic passages, and trade generated in the Arc- tic, including oil and gas exploitation. Furthermore, it assesses the present situation for maritime cargo shipped from the Far East to Northwestern Europe and North America. Two main types of cargo are predicted to pass through the Arctic passages in the future. First, about 10 million t of liquefied natural gas will be delivered from Russia and the Nordic Arctic to the Far East by 2030. Second, there will be two-way trade flow of containerized cargo from the Far East to Europe and the United States through the North- east, Central and Northwest Passages. This will relieve pressure on present routes from the Far East to Northwestern Europe and North America. If Arctic navigation is technically possible in all seasons and shipping costs fall to those of ordinary ships, then assuming an equal share of shipping volume with the traditional canal routes, the maximum container freight passing through the Arctic passages by 2030 will be approximately 17.43 million TEUs (Twenty-foot Equivalent Units) per year, which is 85% of the volume transported on traditional canal routes in 2011. We conclude that there will be large-scale gas transportation through the Northeast Passage in the near future, and transit shipping across the Arctic will focus more on container transportation. The differences in shipping costs between Arctic routes and traditional canal routes are also compared.展开更多
In order to deliver medical products (medicines, vaccines, blood packs, etc.) in time for needed areas, a method of transporting goods using drones is being studied. However, temperature-sensitive medical products may...In order to deliver medical products (medicines, vaccines, blood packs, etc.) in time for needed areas, a method of transporting goods using drones is being studied. However, temperature-sensitive medical products may decay due to outside temperature changes. The time required to transport over the distance may vary a lot as well. As a result, the likelihood of the goods deteriorating is very high. There is a need for a study on cargo bay to prevent this and to protect the medical goods. In this paper, in order to protect the temperature sensitive medical goods, the inside cargo bay is equipped with the cooling fan device and the electric heating elements. These elements can be monitored and controlled according to the user’s discretion. By using the web server built inside the cloud server, the temperature can be controlled in real-time from anywhere without the limitation of distance. We built the proposed device, and installed it on the drone cargo bay. The test results show that the cargo bay can be temperature-controlled, and the setting can be maintained over a great distance. The user can watch the temperature variations during the transport and ascertain the goodness of the medical supply with the data. It is expected that such development can greatly enhance the utility of the drone operations, especially for the medical supply transport applications.展开更多
In molecular engineering,designing and synthesizing molecular machines with capable of performing complex tasks,remains a formidable challenge.DNA is an excellent candidate for building molecular robots because it is ...In molecular engineering,designing and synthesizing molecular machines with capable of performing complex tasks,remains a formidable challenge.DNA is an excellent candidate for building molecular robots because it is highly programmable.Here,we present an artificial nanorobot,in which a DNA cube serves as the inert‘body’,and nucleic acid catalysts based on an enzymatic nicking reaction act as the‘legs’for walking.The nanorobot can execute a series of actions,such as‘start’,‘turn’,and‘stop’when it walks along a predefined track.Its performance could be confirmed and monitored by using an atomic force microscope(AFM)and fluorescence spectroscopy.Inspired by biological machines,we artificially designed a series of specialized tasks that combined walking with control of cargo transport and catalysis.Real-time fluorescence kinetics curves provide monitoring signals for cargo transport and catalytic processes.Our work can enrich the toolbox of DNA machinery and has great potential for engineering molecular nanofactories.展开更多
文摘Evacuated Tube Transport Technologies (ET3) offers the potential for more than an order of magnitude improvement in transportation efficiency, speed, cost, and effectiveness. An ET3 network may be optimized to sustainably displace most global transportation by car, ship, truck, train, and jet aircraft. To do this, ET3 standards should adhere to certain key principals: maximum value through efficiency, reliability, and simplicity; equal consideration for passenger and cargo loads; optimum size; high speed/high frequency operation; demand oriented; random accessibility; scalability; high granularity; automated control; full speed passive switching; open standards of implementation; and maximum use of existing capacities, materials, and processes.
文摘In this work, we consider a specific problem of optimal planning of maritime transportation of multiproduct cargo by ships of one (so-called "corporate strategy") or several (so-called "partially corporate strategy") companies: the core of the problem consists of the existence of the network of intermediate seaports (i.e., transitional seaports), where for every ship arrived the cargo handling is done, and which are situated between the starting and the finishing seaports. In this work, there are mathematical models built from scratch in the form of multi-criterion optimization problem; according to the properties of the criteria and structure of the feasible solution set; are formulated different optimality conditions; are analysed different approaches for finding effective solutions (i.e., Pareto optimal solutions) and for check of the given solutions' effectiveness. In addition, in this work, there is considered and analysed well-known method of contraction of the Pareto boundary (goal attainment method of Gembicki), then, it is used for reducing the built models to a one-criterion problem of linear programming.
文摘The CTB Water Wall project is a maximal product life cycle utilization concept study by members of the space architecture design community.Its function is to demonstrate a human space activity Cargo Transport Bag(CTB)that becomes a primary water recycling membrane element after delivery of cargo,and then a permanent architectural building block for sustainable space habitation after its use in water treatment is complete.As such,it is intended as an experiment in radical life cycle product optimization in an extremely mass-constrained application environment(human space operations).It also introduces some fundamentally interesting concepts in architectural use of waste materials in extreme environments.Finally,it is in some ways a simple,tactile and visual demonstration of how far sustainable product design can be taken,if the motivation and technical justification are present.
基金supported by the Ocean Public Welfare Scientific Research Project of China"Seaworthy Evaluation of the Arctic Sea Route,Research and Demonstration of Channel Forecast(Grant no.201205007-6)" the Chinese Polar Environment Comprehensive Investigation & Assessment Programmes(Grant no.CHINARE2013-04-05-01)
文摘This paper investigates the sources of goods being shipped through the Arctic passages, and trade generated in the Arc- tic, including oil and gas exploitation. Furthermore, it assesses the present situation for maritime cargo shipped from the Far East to Northwestern Europe and North America. Two main types of cargo are predicted to pass through the Arctic passages in the future. First, about 10 million t of liquefied natural gas will be delivered from Russia and the Nordic Arctic to the Far East by 2030. Second, there will be two-way trade flow of containerized cargo from the Far East to Europe and the United States through the North- east, Central and Northwest Passages. This will relieve pressure on present routes from the Far East to Northwestern Europe and North America. If Arctic navigation is technically possible in all seasons and shipping costs fall to those of ordinary ships, then assuming an equal share of shipping volume with the traditional canal routes, the maximum container freight passing through the Arctic passages by 2030 will be approximately 17.43 million TEUs (Twenty-foot Equivalent Units) per year, which is 85% of the volume transported on traditional canal routes in 2011. We conclude that there will be large-scale gas transportation through the Northeast Passage in the near future, and transit shipping across the Arctic will focus more on container transportation. The differences in shipping costs between Arctic routes and traditional canal routes are also compared.
文摘In order to deliver medical products (medicines, vaccines, blood packs, etc.) in time for needed areas, a method of transporting goods using drones is being studied. However, temperature-sensitive medical products may decay due to outside temperature changes. The time required to transport over the distance may vary a lot as well. As a result, the likelihood of the goods deteriorating is very high. There is a need for a study on cargo bay to prevent this and to protect the medical goods. In this paper, in order to protect the temperature sensitive medical goods, the inside cargo bay is equipped with the cooling fan device and the electric heating elements. These elements can be monitored and controlled according to the user’s discretion. By using the web server built inside the cloud server, the temperature can be controlled in real-time from anywhere without the limitation of distance. We built the proposed device, and installed it on the drone cargo bay. The test results show that the cargo bay can be temperature-controlled, and the setting can be maintained over a great distance. The user can watch the temperature variations during the transport and ascertain the goodness of the medical supply with the data. It is expected that such development can greatly enhance the utility of the drone operations, especially for the medical supply transport applications.
基金supported by the National Natural Science Foundation of China(Nos.21991080,22374042)the Science and Technology Major Project of Hunan Province,China(No.2021SK1020).
文摘In molecular engineering,designing and synthesizing molecular machines with capable of performing complex tasks,remains a formidable challenge.DNA is an excellent candidate for building molecular robots because it is highly programmable.Here,we present an artificial nanorobot,in which a DNA cube serves as the inert‘body’,and nucleic acid catalysts based on an enzymatic nicking reaction act as the‘legs’for walking.The nanorobot can execute a series of actions,such as‘start’,‘turn’,and‘stop’when it walks along a predefined track.Its performance could be confirmed and monitored by using an atomic force microscope(AFM)and fluorescence spectroscopy.Inspired by biological machines,we artificially designed a series of specialized tasks that combined walking with control of cargo transport and catalysis.Real-time fluorescence kinetics curves provide monitoring signals for cargo transport and catalytic processes.Our work can enrich the toolbox of DNA machinery and has great potential for engineering molecular nanofactories.