The glass fiber reinforced polymer (GFRP) tube is an effective material that can increase the bearing capacity and ductility of concrete.To study the mechanical behavior of this composite structure,twenty-one concrete...The glass fiber reinforced polymer (GFRP) tube is an effective material that can increase the bearing capacity and ductility of concrete.To study the mechanical behavior of this composite structure,twenty-one concrete-filled GFRP tubular short columns were tested under an eccentric load.The principle influencing factors,such as the eccentricity ratio,concrete strength and ratio of longitudinal reinforcement were also studied.In addition,the course of deformation,failure mode,and failure mechanism were analyzed by observing the phenomena and summarizing the data.The test results indicated that the strength and deformation characteristics of core concrete increase as a result of the addition of the GFRP tube.However,the gain in strength due to the addition of the GFRP tube decreases as the ratio of e /d increases.An increase in the longitudinal steel ratio can improve the bearing capacity of the composite short column effectively.Furthermore,the study showed that the constraint effect of the GFRP tube on high-strength concrete is not as effective as that on common concrete.The reason is that the lateral deformation of the high-strength concrete is less than that of the common concrete when the concrete column was tested under the same axial compression ratio.展开更多
This paper describes a nonlinear finite element (FE) analysis of high strength concrete (HSC) columns, and verifies the results through laboratory experiments. First, a cyclically lateral loading test on nine cant...This paper describes a nonlinear finite element (FE) analysis of high strength concrete (HSC) columns, and verifies the results through laboratory experiments. First, a cyclically lateral loading test on nine cantilever column specimens of HSC is described and a numerical simulation is presented to verify the adopted FE models. Next, based on the FE model for specimen No.6, numerical simulations for 70 cases, in which different concrete strengths, stirrup ratios and axial load ratios are considered, are presented to explore the effect of these parameters on the behavior of the HSC columns, and to check the rationality of requirements for these columns specified in the China Code for Seismic Design of Buildings (GB 50011- 2001). In addition, three cases with different stirrup strengths are analyzed to investigate their effect on the behavior of HSC columns. Finally, based on the numerical results some conclusions are presented.展开更多
This study investigates the seismic performance of multiple reinforcement,high-strength concrete(MRHSC)columns that are characterized by multiple transverse and longitudinal reinforcements in core areas.Eight MRHSC co...This study investigates the seismic performance of multiple reinforcement,high-strength concrete(MRHSC)columns that are characterized by multiple transverse and longitudinal reinforcements in core areas.Eight MRHSC columns were designed and subjected to a low cycle,reversed loading test.The response,including the failure modes,hysteretic behavior,lateral bearing capacity,and displacement ductility,was analyzed.The effects of the axial compression ratio,stirrup form,and stirrup spacing of the central reinforcement configuration on the seismic performance of the columns were studied.Furthermore,an analytical model was developed to predict the backbone force-displacement curves of the MRHSC columns.The test results showed that these columns experienced two failure modes:shear failure and flexure-shear failure.As the axial compression ratio increased,the bearing capacity increased significantly,whereas the deformation capacity and ductility decreased.A decrease in the spacing of central transverse reinforcements improved the ductility and delayed the degradation of load-bearing capacity.The proposed analytical model can accurately predict the lateral force and deformations of MRHSC columns.展开更多
The paper investigates the behaviors of recycled aggregate concrete-filled steel tubular(RACFST)columns under eccentric loadings with the incorporation of expansive agents.A total of 16 RACFST columns were tested in t...The paper investigates the behaviors of recycled aggregate concrete-filled steel tubular(RACFST)columns under eccentric loadings with the incorporation of expansive agents.A total of 16 RACFST columns were tested in this study.The main parameters varied in this study are recycled coarse aggregate replacement percentages(0%,30%,50%,70%,and 100%),expansive agent dosages(0%,8%,and 15%)and an eccentric distance of compressive load from the center of the column(0 and 40 mm).Experimental results showed that the ultimate stresses of RACFST columns decreased with increasing recycled coarse aggregate replacement percentages but appropriate expansive agent dosages can reduce the decrement;the incorporation of expansive agent decreased the ultimate stresses of RACFST columns but an appropriate dosage can increase the deformation ability.The recycled coarse aggregate replacement percentages have limited influence on the ultimate stresses of the RACFST columns and has more effect than that of the normal aggregate concretesteel tubular columns.展开更多
文摘The glass fiber reinforced polymer (GFRP) tube is an effective material that can increase the bearing capacity and ductility of concrete.To study the mechanical behavior of this composite structure,twenty-one concrete-filled GFRP tubular short columns were tested under an eccentric load.The principle influencing factors,such as the eccentricity ratio,concrete strength and ratio of longitudinal reinforcement were also studied.In addition,the course of deformation,failure mode,and failure mechanism were analyzed by observing the phenomena and summarizing the data.The test results indicated that the strength and deformation characteristics of core concrete increase as a result of the addition of the GFRP tube.However,the gain in strength due to the addition of the GFRP tube decreases as the ratio of e /d increases.An increase in the longitudinal steel ratio can improve the bearing capacity of the composite short column effectively.Furthermore,the study showed that the constraint effect of the GFRP tube on high-strength concrete is not as effective as that on common concrete.The reason is that the lateral deformation of the high-strength concrete is less than that of the common concrete when the concrete column was tested under the same axial compression ratio.
基金National Nature Science Foundation of China Under Grant No. 50621062
文摘This paper describes a nonlinear finite element (FE) analysis of high strength concrete (HSC) columns, and verifies the results through laboratory experiments. First, a cyclically lateral loading test on nine cantilever column specimens of HSC is described and a numerical simulation is presented to verify the adopted FE models. Next, based on the FE model for specimen No.6, numerical simulations for 70 cases, in which different concrete strengths, stirrup ratios and axial load ratios are considered, are presented to explore the effect of these parameters on the behavior of the HSC columns, and to check the rationality of requirements for these columns specified in the China Code for Seismic Design of Buildings (GB 50011- 2001). In addition, three cases with different stirrup strengths are analyzed to investigate their effect on the behavior of HSC columns. Finally, based on the numerical results some conclusions are presented.
基金Natural Science Foundation of China(NSFC)under Grant No.51868073Special Funds for Technology Innovation Guidance of Shaanxi under Grant No.2019CGHJ-06+1 种基金Natural Science Foundation of Shaanxi under Grant No.2018JQ5005Special Fund for Basic Scientific Research of Central Colleges under Grant No.300102288302。
文摘This study investigates the seismic performance of multiple reinforcement,high-strength concrete(MRHSC)columns that are characterized by multiple transverse and longitudinal reinforcements in core areas.Eight MRHSC columns were designed and subjected to a low cycle,reversed loading test.The response,including the failure modes,hysteretic behavior,lateral bearing capacity,and displacement ductility,was analyzed.The effects of the axial compression ratio,stirrup form,and stirrup spacing of the central reinforcement configuration on the seismic performance of the columns were studied.Furthermore,an analytical model was developed to predict the backbone force-displacement curves of the MRHSC columns.The test results showed that these columns experienced two failure modes:shear failure and flexure-shear failure.As the axial compression ratio increased,the bearing capacity increased significantly,whereas the deformation capacity and ductility decreased.A decrease in the spacing of central transverse reinforcements improved the ductility and delayed the degradation of load-bearing capacity.The proposed analytical model can accurately predict the lateral force and deformations of MRHSC columns.
基金the National Natural Science Foundation of China(Grant Nos.51250110074 and 51438007).
文摘The paper investigates the behaviors of recycled aggregate concrete-filled steel tubular(RACFST)columns under eccentric loadings with the incorporation of expansive agents.A total of 16 RACFST columns were tested in this study.The main parameters varied in this study are recycled coarse aggregate replacement percentages(0%,30%,50%,70%,and 100%),expansive agent dosages(0%,8%,and 15%)and an eccentric distance of compressive load from the center of the column(0 and 40 mm).Experimental results showed that the ultimate stresses of RACFST columns decreased with increasing recycled coarse aggregate replacement percentages but appropriate expansive agent dosages can reduce the decrement;the incorporation of expansive agent decreased the ultimate stresses of RACFST columns but an appropriate dosage can increase the deformation ability.The recycled coarse aggregate replacement percentages have limited influence on the ultimate stresses of the RACFST columns and has more effect than that of the normal aggregate concretesteel tubular columns.