According to the recent studies,the gravitational wave(GW)echoes are expected to be generated by quark stars composed of ultrastiff quark matter.The ultrastiff equations of state(EOS)for quark matter were usually obta...According to the recent studies,the gravitational wave(GW)echoes are expected to be generated by quark stars composed of ultrastiff quark matter.The ultrastiff equations of state(EOS)for quark matter were usually obtained either by a simple bag model with artificially assigned sound velocity or by employing interacting strange quark matter(SQM)depicted by simple reparameterization and rescaling.In this study,we investigate GW echoes with EOSs for SQM in the framework of the equivparticle model with density-dependent quark masses and pairing effects.We conclude that strange quark stars(SQSs)can be sufficiently compact to possess a photon sphere capable of generating GW echoes with frequencies in the range of approximately 20 kHz.However,SQSs cannot account for the observed 72 Hz signal in GW170817 event.Furthermore,we determined that quark-pairing effects play a crucial role in enabling SQSs to satisfy the necessary conditions for producing these types of echoes.展开更多
The model of linear frequency modulation continuous wave (LFMCW) applied in underwater detection and the method for the detection of echo signal and the estimation of target parameters were studied. By analyzing the...The model of linear frequency modulation continuous wave (LFMCW) applied in underwater detection and the method for the detection of echo signal and the estimation of target parameters were studied. By analyzing the heterodyne signal, an algorithm with the structure of heterodyne-Practional Fourier Transform (FRFT) was proposed. To reduce the computation of searching targets in a two-dimensional FRFT result, the heterodyne signal would be processed by FRFT at a specific order, after Radon-Ambiguity Transform (RAT) was applied to estimate the sweep rate of the signal. Simulations proved that the algorithm can eliminate the coupling phenomenon of distance and velocity of LFMCW, and estimate targets' parameters accurately. The lake trial results showed that the processing gain of LFMCW processed by the algorithm in this paper was 13 dB better than that of the LFM processed by matched filter. The research results indicated that the algorithm applied in LFMCW underwater detection was feasible and effective, and it could estimate targets' parameters accurately and obtain a good detection performance.展开更多
基金This work was supported by the National Natural Science Foundation of China(Nos.12005005,12205093,12275234,and 11875052)the National SKA Program of China(No.2020SKA0120300)+3 种基金the Hunan Provincial Nature Science Foundation of China(No.2021JJ40188)the Scientific Research Start-up Fund of Talent Introduction of Suqian University(No.Xiao2022XRC061)Suqian Key Laboratory of High Performance Composite Materials(M202109)Suqian University Multi functional Material R&D Platform(2021pt04).
文摘According to the recent studies,the gravitational wave(GW)echoes are expected to be generated by quark stars composed of ultrastiff quark matter.The ultrastiff equations of state(EOS)for quark matter were usually obtained either by a simple bag model with artificially assigned sound velocity or by employing interacting strange quark matter(SQM)depicted by simple reparameterization and rescaling.In this study,we investigate GW echoes with EOSs for SQM in the framework of the equivparticle model with density-dependent quark masses and pairing effects.We conclude that strange quark stars(SQSs)can be sufficiently compact to possess a photon sphere capable of generating GW echoes with frequencies in the range of approximately 20 kHz.However,SQSs cannot account for the observed 72 Hz signal in GW170817 event.Furthermore,we determined that quark-pairing effects play a crucial role in enabling SQSs to satisfy the necessary conditions for producing these types of echoes.
文摘The model of linear frequency modulation continuous wave (LFMCW) applied in underwater detection and the method for the detection of echo signal and the estimation of target parameters were studied. By analyzing the heterodyne signal, an algorithm with the structure of heterodyne-Practional Fourier Transform (FRFT) was proposed. To reduce the computation of searching targets in a two-dimensional FRFT result, the heterodyne signal would be processed by FRFT at a specific order, after Radon-Ambiguity Transform (RAT) was applied to estimate the sweep rate of the signal. Simulations proved that the algorithm can eliminate the coupling phenomenon of distance and velocity of LFMCW, and estimate targets' parameters accurately. The lake trial results showed that the processing gain of LFMCW processed by the algorithm in this paper was 13 dB better than that of the LFM processed by matched filter. The research results indicated that the algorithm applied in LFMCW underwater detection was feasible and effective, and it could estimate targets' parameters accurately and obtain a good detection performance.