Within the context of global change, marine sensitive factors or Marine Essential Climate Variables have been defined by many projects, and their sensitive spatial regions and time phases play significant roles in reg...Within the context of global change, marine sensitive factors or Marine Essential Climate Variables have been defined by many projects, and their sensitive spatial regions and time phases play significant roles in regional sea-air interactions and better understanding of their dynamic process. In this paper, we propose a cluster-based method for marine sensitive region extraction and representation. This method includes a kernel expansion algorithm for extracting marine sensitive regions, and a field-object triple form, integration of object-oriented and field-based model, for representing marine sensitive objects. Firstly, this method recognizes ENSO-related spatial patterns using empirical orthogonal decomposition of long term marine sensitive factors and correlation analysis with multiple ENSO index. The cluster kernel, defined by statistics of spatial patterns, is initialized to carry out spatial expansion and cluster mergence with spatial neighborhoods recursively, then all the related lattices with similar behavior are merged into marine sensitive regions. After this, the Field-object triple form of < O, A, F > is used to represent the marine sensitive objects, both with the discrete object with a precise extend and boundary, and the continuous field with variations dependent on spatial locations. Finally, the marine sensitive objects about sea surface temperature are extracted, represented and analyzed as a case of study, which proves the effectiveness and the efficiency of the proposed method.展开更多
This paper aims to reveal the difference of eco-environmental sensitivity and its influencing factors in the study area through carrying out the eco-environmental sensitivity evaluation based on land ecological securi...This paper aims to reveal the difference of eco-environmental sensitivity and its influencing factors in the study area through carrying out the eco-environmental sensitivity evaluation based on land ecological security for 8 counties of Ordos City. Using fragstats landscape pattern analysis,GIS space method and RS analysis,based on ground investigation,this paper uses information mining and data analysis to extract index data for every village in the study area,carry out comprehensive quantitative evaluation,and finally calculate the comprehensive scores of eco-environmental sensitivity of the areas. The paper concludes that the highly sensitive areas and extremely sensitive areas are mainly concentrated in the eastern region of the eastern hilly and gully region and southern region of the Mu Us Desert in Ordos. The main reasons include severe soil erosion in hilly and gully region and serious desertification in southern Mu Us Desert area. So it is necessary to strengthen ecological environment protection in local areas.展开更多
The material characteristics of a structure will change with temperature variation,and will induce stress within the structure.Currently,the optimal design for the topology of compliant mechanisms is mainly performed ...The material characteristics of a structure will change with temperature variation,and will induce stress within the structure.Currently,the optimal design for the topology of compliant mechanisms is mainly performed in single physical field.However,when compliant mechanisms work in high temperature environments,their displacement outputs are generated not only by mechanical load,but also by the temperature variation which may become the prominent factor.Therefore,the influence of temperature must be considered in the design.In this paper,a novel optimization method for multi-objective topology of thermo-mechanical compliant mechanisms is presented.First,the thermal field is analyzed with finite-element method,where the thermal strain is taken into account in the constitutive relation,and the equivalent nodal thermal load is derived with the principle of virtual work.Then the thermal load is converted into physical loads in elastic field,and the control equation of the thermo-mechanical compliant mechanism is obtained.Second,the mathematical model of the multi-objective topology optimization is built by incorporating both the flexibility and stiffness.Meanwhile,the coupling sensitivity function and the sensitivity analysis equations of thermal steady-state response are derived.Finally,optimality criteria algorithm is employed to obtain numerical solution of the multi-objective topology optimization.Numerical examples show that the compliant mechanisms have better performance and are more applicable if the temperature effect is taken into account in the design process.The presented modeling and analysis methods provide a new idea and an effective approach to topology optimization of compliant mechanisms in electrothermic coupling field and multiphysics fields.展开更多
The integrity and fineness characterization of non-connected regions and contours is a major challenge for existing salient object detection.The key to address is how to make full use of the subjective and objective s...The integrity and fineness characterization of non-connected regions and contours is a major challenge for existing salient object detection.The key to address is how to make full use of the subjective and objective structural information obtained in different steps.Therefore,by simulating the human visual mechanism,this paper proposes a novel multi-decoder matching correction network and subjective structural loss.Specifically,the loss pays different attentions to the foreground,boundary,and background of ground truth map in a top-down structure.And the perceived saliency is mapped to the corresponding objective structure of the prediction map,which is extracted in a bottom-up manner.Thus,multi-level salient features can be effectively detected with the loss as constraint.And then,through the mapping of improved binary cross entropy loss,the differences between salient regions and objects are checked to pay attention to the error prone region to achieve excellent error sensitivity.Finally,through tracking the identifying feature horizontally and vertically,the subjective and objective interaction is maximized.Extensive experiments on five benchmark datasets demonstrate that compared with 12 state-of-the-art methods,the algorithm has higher recall and precision,less error and strong robustness and generalization ability,and can predict complete and refined saliency maps.展开更多
基金supported by the director projects of Centre for Earth Observation and Digital Earth(CEODE)(Nos.Y2ZZ06101B and Y2ZZ18101B)the State Key Laboratory of Resources and Environmental Information System project+1 种基金the National Natural Science Foundation of China(project No.41371385)the National High Technology Research and Development Program of China(project No.2012AA12A403-5)
文摘Within the context of global change, marine sensitive factors or Marine Essential Climate Variables have been defined by many projects, and their sensitive spatial regions and time phases play significant roles in regional sea-air interactions and better understanding of their dynamic process. In this paper, we propose a cluster-based method for marine sensitive region extraction and representation. This method includes a kernel expansion algorithm for extracting marine sensitive regions, and a field-object triple form, integration of object-oriented and field-based model, for representing marine sensitive objects. Firstly, this method recognizes ENSO-related spatial patterns using empirical orthogonal decomposition of long term marine sensitive factors and correlation analysis with multiple ENSO index. The cluster kernel, defined by statistics of spatial patterns, is initialized to carry out spatial expansion and cluster mergence with spatial neighborhoods recursively, then all the related lattices with similar behavior are merged into marine sensitive regions. After this, the Field-object triple form of < O, A, F > is used to represent the marine sensitive objects, both with the discrete object with a precise extend and boundary, and the continuous field with variations dependent on spatial locations. Finally, the marine sensitive objects about sea surface temperature are extracted, represented and analyzed as a case of study, which proves the effectiveness and the efficiency of the proposed method.
基金Supported by Inner Mongolia Industry Innovation(Entrepreneurship)Talent Team Project(2013-2015)
文摘This paper aims to reveal the difference of eco-environmental sensitivity and its influencing factors in the study area through carrying out the eco-environmental sensitivity evaluation based on land ecological security for 8 counties of Ordos City. Using fragstats landscape pattern analysis,GIS space method and RS analysis,based on ground investigation,this paper uses information mining and data analysis to extract index data for every village in the study area,carry out comprehensive quantitative evaluation,and finally calculate the comprehensive scores of eco-environmental sensitivity of the areas. The paper concludes that the highly sensitive areas and extremely sensitive areas are mainly concentrated in the eastern region of the eastern hilly and gully region and southern region of the Mu Us Desert in Ordos. The main reasons include severe soil erosion in hilly and gully region and serious desertification in southern Mu Us Desert area. So it is necessary to strengthen ecological environment protection in local areas.
基金supported by National Science Foundation for Distinguished Young Scholars of China (Grant No. 50825504)United Fund of National Natural Science Foundation of China and Guangdong Province (Grant No. U0934004)+1 种基金National Hi-tech Research and Development Program of National China (863 Program, Grant No. 2009AA04Z204)Fundamental Research Funds for the Central Universities (Grant No. D2102380)
文摘The material characteristics of a structure will change with temperature variation,and will induce stress within the structure.Currently,the optimal design for the topology of compliant mechanisms is mainly performed in single physical field.However,when compliant mechanisms work in high temperature environments,their displacement outputs are generated not only by mechanical load,but also by the temperature variation which may become the prominent factor.Therefore,the influence of temperature must be considered in the design.In this paper,a novel optimization method for multi-objective topology of thermo-mechanical compliant mechanisms is presented.First,the thermal field is analyzed with finite-element method,where the thermal strain is taken into account in the constitutive relation,and the equivalent nodal thermal load is derived with the principle of virtual work.Then the thermal load is converted into physical loads in elastic field,and the control equation of the thermo-mechanical compliant mechanism is obtained.Second,the mathematical model of the multi-objective topology optimization is built by incorporating both the flexibility and stiffness.Meanwhile,the coupling sensitivity function and the sensitivity analysis equations of thermal steady-state response are derived.Finally,optimality criteria algorithm is employed to obtain numerical solution of the multi-objective topology optimization.Numerical examples show that the compliant mechanisms have better performance and are more applicable if the temperature effect is taken into account in the design process.The presented modeling and analysis methods provide a new idea and an effective approach to topology optimization of compliant mechanisms in electrothermic coupling field and multiphysics fields.
基金supported by the National Natural Science Foundation of China(No.52174021)Key Research and Develop-ment Project of Hainan Province(No.ZDYF2022GXJS 003).
文摘The integrity and fineness characterization of non-connected regions and contours is a major challenge for existing salient object detection.The key to address is how to make full use of the subjective and objective structural information obtained in different steps.Therefore,by simulating the human visual mechanism,this paper proposes a novel multi-decoder matching correction network and subjective structural loss.Specifically,the loss pays different attentions to the foreground,boundary,and background of ground truth map in a top-down structure.And the perceived saliency is mapped to the corresponding objective structure of the prediction map,which is extracted in a bottom-up manner.Thus,multi-level salient features can be effectively detected with the loss as constraint.And then,through the mapping of improved binary cross entropy loss,the differences between salient regions and objects are checked to pay attention to the error prone region to achieve excellent error sensitivity.Finally,through tracking the identifying feature horizontally and vertically,the subjective and objective interaction is maximized.Extensive experiments on five benchmark datasets demonstrate that compared with 12 state-of-the-art methods,the algorithm has higher recall and precision,less error and strong robustness and generalization ability,and can predict complete and refined saliency maps.