Non-degradable polymers cause serious environmental pollution problem,such as the widely-used while unrecyclable coatings which significantly affect the overall degradation performance of products.It is imperative and ...Non-degradable polymers cause serious environmental pollution problem,such as the widely-used while unrecyclable coatings which significantly affect the overall degradation performance of products.It is imperative and attractive to develop biodegradable functional coatings.Herein,we proposed a novel strategy to successfully prepare biodegradable,thermoplastic and hydrophobic coatings with high transparence and biosafety by weakening the interchain interactions between cellulose chain.The natural cellulose and cinnamic acid were as raw materials.Via reducing the degree of polymerization(DP)of cellulose and regulating the degree of substitution(DS)of cinnamate moiety,the obtained cellulose cinnamate(CC)exhibited not only the thermalflow behavior but also good biodegradability,which solves the conflict between the thermoplasticity and biodegradability in cellulose-based materials.The glass transition temperature(T_(g))and thermalflow temperature(T_(f))of the CC could be adjusted in a range of 150–200℃ and 180–210℃,respectively.The CC with DS<1.2 and DP≤100 degraded more than 60%after an enzyme treatment for 7 days,and degraded more than 80%after a composting treatment for 42 days.Furthermore,CC had no toxicity to human epidermal cells even at a high concentration(0.5 mg mL^(-1)).In addition,CC could be easily fabricated into multifunctional coating with high hydrophobicity,thermal adhesion and high transparence.Therefore,after combining with cellophane and paperboard,CC coating with low DP and DS could be used to prepare fully-biodegradable heat-sealing packaging,art paper,paper cups,paper straws and food packaging boxes.展开更多
Lignin,lignosulfonate,and synthesized phosphorylated lignosulfonate were introduced as greenfillers in citric acid-sucrose adhesives for bonding particleboard fabricated from areca leaf sheath(ALS).The characteristics ...Lignin,lignosulfonate,and synthesized phosphorylated lignosulfonate were introduced as greenfillers in citric acid-sucrose adhesives for bonding particleboard fabricated from areca leaf sheath(ALS).The characteristics of particleboards were compared to that of ultralow emitting formaldehyde(ULEF-UF).Thefillers derived from Eucalyptus spp.kraft-lignin were added forflame retardancy enhancement.10%of each lignin and modified lig-nin was added into the ULEF-UF and citric acid-sucrose bonded particleboards.Analyses applied to particle-boards included thermal characteristics,X-ray diffraction analysis(XRD),morphological properties,Fourier transform infrared spectroscopy(FTIR),as well as physical,mechanical,andfire resistance characteristics of the laboratory-fabricated particleboards.Lignin and modified lignin resulted in improved thermal stability of the composites bonded with ULEF-UF while the improvement in the particleboard bonded with citric acid-sucrose was not significant.The introduction offiller exerted a higher influence on the UF-bonded particleboards compared to composites fabricated with citric acid-sucrose.Generally,the presence of lignin,lignosulfonate,and phosphorylated lignosulfonate enhanced the mechanical strength of the ULEF-bonded particleboards,although their dimensional stability has deteriorated.Markedly,the use of lignin and lignosulfonate enhanced thefire resis-tance of the particleboards produced with lower observed weight loss.All laboratory particleboards exhibited satisfactoryfire resistance,attaining a V-0 rating in according to the UL-94 standard.展开更多
Zero-emission eco-friendly vehicles with partly or fully electric powertrains have exhibited rapidly increased demand for reducing the emissions of air pollutants and improving the energy efficiency. Advanced catalyti...Zero-emission eco-friendly vehicles with partly or fully electric powertrains have exhibited rapidly increased demand for reducing the emissions of air pollutants and improving the energy efficiency. Advanced catalytic and energy materials are essential as the significant portions in the key technologies of eco-friendly vehicles, such as the exhaust emission control system,power lithium ion battery and hydrogen fuel cell. Precise synthesis and surface modification of the functional materials and electrodes are required to satisfy the efficient surface and interface catalysis, as well as rapid electron/ion transport. Atomic layer deposition(ALD), an atomic and close-to-atomic scale manufacturing method, shows unique characteristics of precise thickness control, uniformity and conformality for film deposition, which has emerged as an important technique to design and engineer advanced catalytic and energy materials. This review has summarized recent process of ALD on the controllable preparation and modification of metal and oxide catalysts, as well as lithium ion battery and fuel cell electrodes. The enhanced catalytic and electrochemical performances are discussed with the unique nanostructures prepared by ALD. Recent works on ALD reactors for mass production are highlighted. The challenges involved in the research and development of ALD on the future practical applications are presented, including precursor and deposition process investigation, practical device performance evaluation, large-scale and efficient production, etc.展开更多
The work is dedicated to develop a one-step eco-friendly method to prepare antibacterial polyethylene terephthalate(PET).We report a one-step eco-friendly method to manufacture antibacterial PET via on-line amination ...The work is dedicated to develop a one-step eco-friendly method to prepare antibacterial polyethylene terephthalate(PET).We report a one-step eco-friendly method to manufacture antibacterial PET via on-line amination reaction by melt coextrusion.Beside evenly mixing of poly(hexamethylene guanidine)(PHMG)and PET in the melt coextrusion procedure,the amination reaction also occurred between PHMG and PET under high temperature(230-270℃).The antibacterial ability of composite PET showed obvious PHMG concentration dependence,and antibacterial activity reached more than 99%when PHMG content was 2.5 wt%.Moreover,LIVE/DEAD fluorescence test further confirmed that the composite PET could kill bacteria quickly and efiectively(within 30 min);while negligible cytotoxicity was observed to HSF and HUVEC cells.Onestep eco-friendly fabrication of composite antibacterial PET was accomplished by on-line melt coextrusion.The composite antibacterial PET has potential use in multiple fields to combat with pathogenic including textiles,packaging materials,decoration materials and biomedical devices,etc.展开更多
Through systematical experiment design, the physical blowing agent(PBA) mass loss of bio-based polyurethane rigid foam(PURF)in the foaming process was measured and calculated in this study, and different eco-friendly ...Through systematical experiment design, the physical blowing agent(PBA) mass loss of bio-based polyurethane rigid foam(PURF)in the foaming process was measured and calculated in this study, and different eco-friendly PBA mass losses were measured quantitatively for the first time. The core of the proposed method is to add water to replace the difference, and this method has a high fault tolerance rate for different foaming forms of foams. The method was proved to be stable and reliable through the standard deviations σ1and σ2for R1(ratio of the PBA mass loss to the material total mass except the PBA) and R2(ratio of the PBA mass loss to the PBA mass in the material total mass) in parallel experiments. It can be used to measure and calculate the actual PBA mass loss in the foaming process of both bio-based and petroleumbased PURF. The results show that the PBA mass loss in PURF with different PBA systems is controlled by its initial mass content of PBA in PU materials ω. The main way for PBA to dissipate into the air is evaporation/escape along the upper surface of foam. This study further reveals the mechanism of PBA mass loss: the evaporation/escape of PBA along the upper surface of foam is a typical diffusion behavior. Its spread power comes from the difference between the chemical potential of PBA in the interface layer and that in the outside air. For a certain PURF system, R1has approximately linear relationship with the initial mass content of PBA in PU materials ω, which can be expressed by the functional relationship R1= kω, where k is a variable related to PBA’s own attributes.展开更多
Environment pollution is one of the major threats to today’s world and researchers say most of the pollution comes from the washing industry.So,the study aims to find out an alternative way to the existing chemical w...Environment pollution is one of the major threats to today’s world and researchers say most of the pollution comes from the washing industry.So,the study aims to find out an alternative way to the existing chemical wash process of the washing industry to save the environment.To conduct this study,one knit washing factory has been selected that has eco-friendly wash facilities.The eco-friendly wash process samples have been developed and finally show the comparison in respect of time,per day production and test result to the conventional chemical wash processes along with the impact of production cost on the garment.For all eco-friendly process,it has been found that water consumptions are too less in comparison with conventional process potentials which is partially related to Sustainable Development Goals 13(Climate Action).This study might help to find out a new era of doing washed knitted product business without polluting the environment.展开更多
Accompanying the development of social economy,the land use model of mountainous area,typically eco-weak area,is changing gradually. Here the establishment of eco-friendly land use model in mountainous area,will pione...Accompanying the development of social economy,the land use model of mountainous area,typically eco-weak area,is changing gradually. Here the establishment of eco-friendly land use model in mountainous area,will pioneer the model of sustainable development in that area. Concerning Qianjiang District of Chongqing Municipality,huge change of land use model,mainly embodied in the unceasing increase of construction land and gradual decrease of agricultural use land,has taken place in recent years. To explore the eco-friendly land use model in mountainous area,Qianjiang District was chosen as the study object in the present study. Via analyzing the changes in land use model,we found that related eco-environment restrictive factors mainly regional climatic change,soil texture,hydrological environment as well as soil erosion and land degradation,etc. And based on these results,we further analyzed the effect of land use change on eco-environment and the factors restricting the maintenance of eco-environment and regional development,finally put forward the counter measures for balancing land use and co-environment in mountainous area. The results will be important for the development of social economy and eco-system construction in Qianjiang District.展开更多
Triboelectric nanogenerators(TENGs)are promising electric energy harvesting devices as they can produce renewable clean energy using mechanical excitations from the environment.Several designs of triboelectric energy ...Triboelectric nanogenerators(TENGs)are promising electric energy harvesting devices as they can produce renewable clean energy using mechanical excitations from the environment.Several designs of triboelectric energy harvesters relying on biocompatible and eco-friendly natural materials have been introduced in recent years.Their ability to provide customizable self-powering for a wide range of applications,including biomedical devices,pressure and chemical sensors,and battery charging appliances,has been demonstrated.This review summarizes major advances already achieved in the field of triboelectric energy harvesting using biocompatible and eco-friendly natural materials.A rigorous,comparative,and critical analysis of preparation and testing methods is also presented.Electric power up to 14 mW was already achieved for the dry leaf/polyvinylidene fluoride-based TENG devices.These findings highlight the potential of eco-friendly self-powering systems and demonstrate the unique properties of the plants to generate electric energy for multiple applications.展开更多
Aiming to investigate the mix design of eco-friendly UHPC with supplementary cementitious materials and coarser aggregates, we comprehensively studied the workability, microstructure, porosity, compressive strength, f...Aiming to investigate the mix design of eco-friendly UHPC with supplementary cementitious materials and coarser aggregates, we comprehensively studied the workability, microstructure, porosity, compressive strength, flexural strength, and Young’s modulus of UHPC. Relationship between compressive strength and Young’s modulus was obtained eventually. It is found that the compressive strength, flexural strength, and Young’s modulus of UHPC increase by 19.01%, 10.81%, and 5.99%, respectively, when 40 wt% cement is replaced with supplementary cementitious materials. The relationship between compressive strength and Young’s modulus of UHPC is an exponential form.展开更多
Indians have been considered as forerunners in the art of natural dyeing. Although indigenous knowledge system has been practiced over the years in the past, the use of natural dyes has diminished over generations due...Indians have been considered as forerunners in the art of natural dyeing. Although indigenous knowledge system has been practiced over the years in the past, the use of natural dyes has diminished over generations due to lack of documentation and precise knowledge of the extracting and dyeing techniques. As a result, natural dyes are not commercially successful. Presently, all environmentally unfriendly synthetic compounds are used for dyeing textile materials. They are non-biodegradable, carcinogenic and generate water pollution as well as waste disposal problems. Natural dyes provide a reasonable solution to these problems. Thus, it is imperative to develop technology for extraction of natural dyes and for their application on textile materials. In this study, attempt has been made to extract natural dyes from a variety of plants sources (such as rhizomes of turmeric, Curcuma longa;fruits of harda, Terminalia chebula;petals of safflower, Carthamus tinctorius;roots of barberry, Berberis lycium etc.) using specific techniques. These dyes were tested for their dyeing potential on different textile materials (cotton, silk and wool). Dyeing was done using three different dyeing techniques (pre-, simultaneous- and post-mordanting) wherein different mordants such as alum, copper sulphate and ferrous sulphate etc., were used to fix dye on to the textile material. A rainbow of natural dyes was obtained with varied shades of each colour. Shade cards were prepared for each dye and the colour obtained varied depending on the type of the mordant applied and the mordanting technique used.展开更多
Based on the Saudi Green initiative,which aims to improve the Kingdom’s environmental status and reduce the carbon emission of more than 278 million tons by 2030 along with a promising plan to achieve netzero carbon ...Based on the Saudi Green initiative,which aims to improve the Kingdom’s environmental status and reduce the carbon emission of more than 278 million tons by 2030 along with a promising plan to achieve netzero carbon by 2060,NEOM city has been proposed to be the“Saudi hub”for green energy,since NEOM is estimated to generate up to 120 Gigawatts(GW)of renewable energy by 2030.Nevertheless,the Information and Communication Technology(ICT)sector is considered a key contributor to global energy consumption and carbon emissions.The data centers are estimated to consume about 13%of the overall global electricity demand by 2030.Thus,reducing the total carbon emissions of the ICT sector plays a vital factor in achieving the Saudi plan to minimize global carbon emissions.Therefore,this paper aims to propose an eco-friendly approach using a Mixed-Integer Linear Programming(MILP)model to reduce the carbon emissions associated with ICT infrastructure in Saudi Arabia.This approach considers the Saudi National Fiber Network(SNFN)as the backbone of Saudi Internet infrastructure.First,we compare two different scenarios of data center locations.The first scenario considers a traditional cloud data center located in Jeddah and Riyadh,whereas the second scenario considers NEOM as a potential cloud data center new location to take advantage of its green energy infrastructure.Then,we calculate the energy consumption and carbon emissions of cloud data centers and their associated energy costs.After that,we optimize the energy efficiency of different cloud data centers’locations(in the SNFN)to reduce the associated carbon emissions and energy costs.Simulation results show that the proposed approach can save up to 94%of the carbon emissions and 62%of the energy cost compared to the current cloud physical topology.These savings are achieved due to the shifting of cloud data centers from cities that have conventional energy sources to a city that has rich in renewable energy sources.Finally,we design a heuristic algorithm to verify the proposed approach,and it gives equivalent results to the MILP model.展开更多
The resistance of wood-fiber paper to water, grease, and water vapor is usually attained by immersing the base paper in hydrophobic oil, laminating with a plastic or metal film, or the application of a barrier coating...The resistance of wood-fiber paper to water, grease, and water vapor is usually attained by immersing the base paper in hydrophobic oil, laminating with a plastic or metal film, or the application of a barrier coating. Oil impregnation and the addition of films may make the paper difficult to recycle or persistent in the environment owing to their strong binding force and nondegradability. Environmental concerns have attracted worldwide attention to eco-friendly barrier coatings. In this study, degradable polyvinyl alcohol(PVA) and kaolin clay pigment were used to prepare coatings that were applied to a base paper. By measuring the barrier properties of the coated paper, including the water absorptiveness(Cobb60 value), Hercules sizing degree, oil resistance(Kit rating), and water vapor transmission rate(WVTR), an optimal coating formulation and process were proposed. To examine the barrier mechanism of the PVA/kaolin clay coating, we characterized the coating microstructures using a scanning electron microscopy(SEM) and a mercury porosimeter. The results showed that the Cobb60 value and water vapor transmission rate of the coated paper decreased by 61.4% and 98.6%, respectively, compared with the base paper, for a pre-coating weight of 0.98 g/m^2 and a top-coating weight of about 3.23 g/m^2. Furthermore, the Hercules sizing degree rose by a factor of 337.2, while the oil resistance(Kit rating) increased from 0 to 12. The optimum drying temperature for a wet coating layer was found to be 170℃, and the optimum weight ratio of PVA to kaolin clay in the coating was determined to be 50∶50. It was assumed that the PVA/kaolin clay coating improved the smoothness of the paper considerably and decreased the pore size by filling the pores on the paper surface and forming an even film, thus enhancing the paper barrier performance. The coated paper also exhibited good repulpability.展开更多
Lost circulation is one of the most important concerns of the drilling industry, causing excessive expenditure and increasing the non-productive drilling time. In this study, various lost circulation materials(LCMs) w...Lost circulation is one of the most important concerns of the drilling industry, causing excessive expenditure and increasing the non-productive drilling time. In this study, various lost circulation materials(LCMs) were used to control the lost circulation of two types of drilling fluids, bentonite mud and a new eco-friendly mud, named RIA-X, which has a remarkable effect on decreasing the amount of lost circulation in fractured and highly permeable reservoirs. The Bridging Material Test(BMT) apparatus was used to investigate the effectiveness of various LCMs in fractures of various sizes and to select the LCM and combination with the best performance. The use of three-dimensional fractures is one of the most notable points of this work, which makes the experimental conditions similar to those of real wells. The lost control performance of the new eco-friendly LCMs in RIA-X mud was tested in field. The outcomes show that the designed LCMs are able to control severe lost circulation that regular processes such as cementing or drilling with foam cannot deal with.展开更多
An eco-friendly synthesis of cyclododecanone (CDON) from cyclododecatriene (CDT) is described. Selec- tive epoxidation of CDT with hydrogen peroxide using hexadecyl trimethyl ammonium heteropolyphospha- totungstate [(...An eco-friendly synthesis of cyclododecanone (CDON) from cyclododecatriene (CDT) is described. Selec- tive epoxidation of CDT with hydrogen peroxide using hexadecyl trimethyl ammonium heteropolyphospha- totungstate [(n-C16H33NMe3)3PW4O16, HAHPT] as catalyst and water as solvent followed by the hydrogena- tion on Raney nickel catalyst gave cyclododecanol (CDOL). The latter was oxidized with hydrogen peroxide using HAHPT as catalyst and a mixture of water and t-butanol as solvent to afford CDON. The total yield was 53.4% under the optimum reaction conditions.展开更多
The major contemporary in road pavement engineering is related to the creation of green and sustainable infrastructures,e.g.,reduction of environmental impacts,increase in traffic safety,and transportation efficiency...The major contemporary in road pavement engineering is related to the creation of green and sustainable infrastructures,e.g.,reduction of environmental impacts,increase in traffic safety,and transportation efficiency,etc.This review presents the recent trends in research and the technical solutions developed so far to address these challenges.After the analysis of research status in the past decades,a novel technology system of eco-friendly pavements is proposed considering two solutions,materials modification and structure improvement.The construction of an eco-friendly pavement can be achieved thanks to several different technologies ensuring permeable,noise-reducing,self-luminous,and exhaust-decomposing properties as well as apporting lower heat absorbing and enhanced anti-/de-icing characteristics.A systematic review of these technologies is presented pivoting on four main aspects:technical principle,material and structural composition,performance evaluation,and engineering application.The current trend in road engineering is combining the pavement infrastructure with various eco-friendly functions,e.g.,water permeability,noise reduction,low heat absorption,exhaust gas decomposition,and anti-/de-icing.Finally,the review lists the drawbacks of the existing technologies,including high cost,single function,etc.,and depicts the future developing direction and architecture of the next generation of eco-friendly pavements in which the road infrastructure should have more environmentally friendly functions than the existing technology.展开更多
During the production of palm oil,a significant amount of waste is generated.However,because of inefficient handling and utilization,these wastes are becoming a larger issue.As a result,one initiative is to use these ...During the production of palm oil,a significant amount of waste is generated.However,because of inefficient handling and utilization,these wastes are becoming a larger issue.As a result,one initiative is to use these wastes in the pavement industry as sustainable materials.However,there is still a lack of understanding about the wider incorporation of palm oil waste in asphalt pavement and its performance.This study examines existing literature on the use of various wastes in the pavement industry,including palm oil clinker(POC),palm oil fibre(POF),palm kernel shell(PKS),and palm oil fuel ash(POFA).As a result,this paper presents a systematic review and scientometric investigation of related study publications on many uses of palm oil waste in the asphalt pavement industry and its performance from 2009 to 2022.The VOS viewer application was used to conduct the sciento-metric study analysis.The relationship between interactions detected in co-authored country studies cited sources of co-citation,and the keyword of the co-occurrence and publication source enabled the identification of the research gap.According to the systematic literature review,40%–60% POC can be used to fine aggregate for optimal performance,while 0–100%PKS can be used to replace coarse aggregate.In addition,50%–80% POFA or POC fine(POCF)can be used as a filler replacement,5%–8% POCF or POFA as a bitumen modifier,and 0.3% POF as a stabilizing additive.Furthermore,the study demonstrates that the safety of utilizing wastes with more than 50% CO_(2) emissions can be curtailed with minimal heavy metal leaching and radioactivity levels.The scientometric analysis may encourage researchers to seek out gaps in the literature that will aid in the long-term,multifaceted use of palm oil wastes in the asphalt pavement industry.Furthermore,the study recommends employing and researching the enormous potential of using palm oil waste in the pavement sectors because they are more sustainable and have better performance.However,there are some barriers to using palm oil waste in the asphalt pavement industry,such as a lack of design standards and guidelines,inefficient raw material pro-cessing conversion facilities,and large-scale production equipment.展开更多
The global oil and gas industry has a long standing initiative to develop and use the most environment friendly solutions in the exploration and exploitation of oil and gas resources to prevent any damage or degradati...The global oil and gas industry has a long standing initiative to develop and use the most environment friendly solutions in the exploration and exploitation of oil and gas resources to prevent any damage or degradation of other marine and terrestrial resources. This is reflected by increasing research in academics, research institutes and organizations around the globe to develop better and more environment friendly base fluids, viscosifiers, fluid loss additives, emulsifiers, lubricants, etc. to protect the local, regional and global environments, eco-systems, habitats and also the OHS of workers and professionals working in the oil and gas industry. This paper describes the development, testing and evaluation of several novel additives to demonstrate their suitability for oil and gas field applications to avoid any negative impact to the surrounding environment. Experimental results indicate that the newly developed additives provide desirable, similar or better performance with respect to conventional additives used by the industry and thus demonstrate their suitability for application in aqueous and non-aqueous fluid design. The plant-based organic additive identified to use as an ecofriendly viscosifier for aqueous mud system can also control the fluid loss behavior of clay free system and thus can act as a bi-functional additive. Several waste vegetable oil-based eco-friendly additives have been developed for their application as spotting fluids, base oil and emulsifiers for invert emulsion oil based mud. These additives have similar or better technical performance than the equivalents and the eco-friendly nature of the mud additives demonstrates their ability to perform the functional tasks with better protection of the surrounding environments.展开更多
Hot metal transfer ladles were historically lined with high alumina refractories because of compatibility of high alumina refractories with the highly acidic slag, which is transferred .from the iron making plant alon...Hot metal transfer ladles were historically lined with high alumina refractories because of compatibility of high alumina refractories with the highly acidic slag, which is transferred .from the iron making plant along with hot metal. With the introduction of higher capacity ladles, technological advancement in the process and increased productivity, calls for a higher campaign life of hot metal ladles, which could not be performed by ordinary high alumina refractories. Resin bonded Al2O3- SiC-C (hereinafter ASC ) bricks gradually developed which at present taking place replacing the conventional refractories. Considerable work has been carried out in developing the ASC refractory to reach the present state. However, for higher capacity ladles still there is a lot of scope for improvement. The present paper deals with the newly developed ASC bricks, which was used in 165 ton capacity hot metal ladles in one European plant and has given a substantial increase in performance. But, the customer was not fuUy satisfied since the brick was reported to produce smokes during preheating of the ladle. In the subsequent supply the smoke generation problem was taken care by adjusting the binders and additives and eco-friendly bricks were re-engineered and supplied to the same plant, which also performed splendidly and created all time record in their plant history.展开更多
Four components have been reacted in water and in the presence of N-morpholine yielded pyrnopyrazole as a simple substrate for novel N2-acyclonucleoside derivatives of fused pyranopyrazole. The sodium salt of fused py...Four components have been reacted in water and in the presence of N-morpholine yielded pyrnopyrazole as a simple substrate for novel N2-acyclonucleoside derivatives of fused pyranopyrazole. The sodium salt of fused pyranopyrazole reacted with halo alcohols led to the formation of new scaffolds from fused pyranopyrazole derivatives. All newly prepared compounds are characterized spectroscopically.展开更多
This work focused on effects of an eco-friendly carrier JYK on thermal properties,dye uptake,color yield(K/S values)and color fastness of recycled polyester knit fabrics.The study also explored optimization of the low...This work focused on effects of an eco-friendly carrier JYK on thermal properties,dye uptake,color yield(K/S values)and color fastness of recycled polyester knit fabrics.The study also explored optimization of the low-temperature carrier(LTC)dyeing and compared its dyeing performance to the high-temperature and high-pressure(HTHP)dyeing.Results showed that the eco-friendly carrier JYK had an obvious plasticizing effect on recycled polyester,which significantly reduced the glass transition temperature,thereby reducing the dyeing temperature and benefiting low-temperature dyeing.The optimal dyeing conditions were determined as follows:the disperse dye was 2%on weight of fabric(owf)and the eco-friendly carrier JYK was 2%owf at 98℃dyeing temperature for 60 min.Compared with the HTHP dyeing,there was no significant difference in the K/S values and color fastness of recycled polyester fabrics dyed in the low-temperature method which demonstrated that the low-temperature method could be totally accepted.This study indicated that the low-temperature dyeing with a carrier JYK could be an effective and sustainable method for dyeing recycled polyester.展开更多
基金supported by the National Natural Science Foundation of China(No.52173292)the National Key Research and Development Project of China(No.2020YFC1910303)the Youth Innovation Promotion Association CAS(No.2018040).
文摘Non-degradable polymers cause serious environmental pollution problem,such as the widely-used while unrecyclable coatings which significantly affect the overall degradation performance of products.It is imperative and attractive to develop biodegradable functional coatings.Herein,we proposed a novel strategy to successfully prepare biodegradable,thermoplastic and hydrophobic coatings with high transparence and biosafety by weakening the interchain interactions between cellulose chain.The natural cellulose and cinnamic acid were as raw materials.Via reducing the degree of polymerization(DP)of cellulose and regulating the degree of substitution(DS)of cinnamate moiety,the obtained cellulose cinnamate(CC)exhibited not only the thermalflow behavior but also good biodegradability,which solves the conflict between the thermoplasticity and biodegradability in cellulose-based materials.The glass transition temperature(T_(g))and thermalflow temperature(T_(f))of the CC could be adjusted in a range of 150–200℃ and 180–210℃,respectively.The CC with DS<1.2 and DP≤100 degraded more than 60%after an enzyme treatment for 7 days,and degraded more than 80%after a composting treatment for 42 days.Furthermore,CC had no toxicity to human epidermal cells even at a high concentration(0.5 mg mL^(-1)).In addition,CC could be easily fabricated into multifunctional coating with high hydrophobicity,thermal adhesion and high transparence.Therefore,after combining with cellophane and paperboard,CC coating with low DP and DS could be used to prepare fully-biodegradable heat-sealing packaging,art paper,paper cups,paper straws and food packaging boxes.
基金funded by the Equity Project Universitas Sumatera Utara(Number:10/UN5.2.3.1/PPM/KPEP/2023),which is entitled Pengembangan Papan Partikel Tahan Api Rendah Emisi Berbahan Limbah Tanaman Mangrove dan Limbah Tanaman Pertanian Melalui Penambahan Lignin Terfosforilasi Sebagai Filler.PT Greenei Alam Indonesia(PT GAI)contributed to providing the areca leaf sheath through the implementation of a collaboration agreement with the Research Center for Biomass and Bioproducts BRIN FY 2023-2025.
文摘Lignin,lignosulfonate,and synthesized phosphorylated lignosulfonate were introduced as greenfillers in citric acid-sucrose adhesives for bonding particleboard fabricated from areca leaf sheath(ALS).The characteristics of particleboards were compared to that of ultralow emitting formaldehyde(ULEF-UF).Thefillers derived from Eucalyptus spp.kraft-lignin were added forflame retardancy enhancement.10%of each lignin and modified lig-nin was added into the ULEF-UF and citric acid-sucrose bonded particleboards.Analyses applied to particle-boards included thermal characteristics,X-ray diffraction analysis(XRD),morphological properties,Fourier transform infrared spectroscopy(FTIR),as well as physical,mechanical,andfire resistance characteristics of the laboratory-fabricated particleboards.Lignin and modified lignin resulted in improved thermal stability of the composites bonded with ULEF-UF while the improvement in the particleboard bonded with citric acid-sucrose was not significant.The introduction offiller exerted a higher influence on the UF-bonded particleboards compared to composites fabricated with citric acid-sucrose.Generally,the presence of lignin,lignosulfonate,and phosphorylated lignosulfonate enhanced the mechanical strength of the ULEF-bonded particleboards,although their dimensional stability has deteriorated.Markedly,the use of lignin and lignosulfonate enhanced thefire resis-tance of the particleboards produced with lower observed weight loss.All laboratory particleboards exhibited satisfactoryfire resistance,attaining a V-0 rating in according to the UL-94 standard.
基金supported by the National Key R&D Program of China (2020YFB2010401 and 2022YFF1500400)National Natural Science Foundation of China (51835005and 52271216)+2 种基金Hubei Province Natural Science Foundation for Innovative Research Group (2020CFA030)Fundamental Research Funds for the Central Universities,HUST(2020kfy XJJS100)Tencent Foundation。
文摘Zero-emission eco-friendly vehicles with partly or fully electric powertrains have exhibited rapidly increased demand for reducing the emissions of air pollutants and improving the energy efficiency. Advanced catalytic and energy materials are essential as the significant portions in the key technologies of eco-friendly vehicles, such as the exhaust emission control system,power lithium ion battery and hydrogen fuel cell. Precise synthesis and surface modification of the functional materials and electrodes are required to satisfy the efficient surface and interface catalysis, as well as rapid electron/ion transport. Atomic layer deposition(ALD), an atomic and close-to-atomic scale manufacturing method, shows unique characteristics of precise thickness control, uniformity and conformality for film deposition, which has emerged as an important technique to design and engineer advanced catalytic and energy materials. This review has summarized recent process of ALD on the controllable preparation and modification of metal and oxide catalysts, as well as lithium ion battery and fuel cell electrodes. The enhanced catalytic and electrochemical performances are discussed with the unique nanostructures prepared by ALD. Recent works on ALD reactors for mass production are highlighted. The challenges involved in the research and development of ALD on the future practical applications are presented, including precursor and deposition process investigation, practical device performance evaluation, large-scale and efficient production, etc.
基金Funded by the National Natural Science Foundation of China(No.51703169)Key Program of Science and Technology of Jieyang City(No.2019016)Key Research and Development Program of Shandong Province of China(No.2019JZZY010338)。
文摘The work is dedicated to develop a one-step eco-friendly method to prepare antibacterial polyethylene terephthalate(PET).We report a one-step eco-friendly method to manufacture antibacterial PET via on-line amination reaction by melt coextrusion.Beside evenly mixing of poly(hexamethylene guanidine)(PHMG)and PET in the melt coextrusion procedure,the amination reaction also occurred between PHMG and PET under high temperature(230-270℃).The antibacterial ability of composite PET showed obvious PHMG concentration dependence,and antibacterial activity reached more than 99%when PHMG content was 2.5 wt%.Moreover,LIVE/DEAD fluorescence test further confirmed that the composite PET could kill bacteria quickly and efiectively(within 30 min);while negligible cytotoxicity was observed to HSF and HUVEC cells.Onestep eco-friendly fabrication of composite antibacterial PET was accomplished by on-line melt coextrusion.The composite antibacterial PET has potential use in multiple fields to combat with pathogenic including textiles,packaging materials,decoration materials and biomedical devices,etc.
文摘Through systematical experiment design, the physical blowing agent(PBA) mass loss of bio-based polyurethane rigid foam(PURF)in the foaming process was measured and calculated in this study, and different eco-friendly PBA mass losses were measured quantitatively for the first time. The core of the proposed method is to add water to replace the difference, and this method has a high fault tolerance rate for different foaming forms of foams. The method was proved to be stable and reliable through the standard deviations σ1and σ2for R1(ratio of the PBA mass loss to the material total mass except the PBA) and R2(ratio of the PBA mass loss to the PBA mass in the material total mass) in parallel experiments. It can be used to measure and calculate the actual PBA mass loss in the foaming process of both bio-based and petroleumbased PURF. The results show that the PBA mass loss in PURF with different PBA systems is controlled by its initial mass content of PBA in PU materials ω. The main way for PBA to dissipate into the air is evaporation/escape along the upper surface of foam. This study further reveals the mechanism of PBA mass loss: the evaporation/escape of PBA along the upper surface of foam is a typical diffusion behavior. Its spread power comes from the difference between the chemical potential of PBA in the interface layer and that in the outside air. For a certain PURF system, R1has approximately linear relationship with the initial mass content of PBA in PU materials ω, which can be expressed by the functional relationship R1= kω, where k is a variable related to PBA’s own attributes.
文摘Environment pollution is one of the major threats to today’s world and researchers say most of the pollution comes from the washing industry.So,the study aims to find out an alternative way to the existing chemical wash process of the washing industry to save the environment.To conduct this study,one knit washing factory has been selected that has eco-friendly wash facilities.The eco-friendly wash process samples have been developed and finally show the comparison in respect of time,per day production and test result to the conventional chemical wash processes along with the impact of production cost on the garment.For all eco-friendly process,it has been found that water consumptions are too less in comparison with conventional process potentials which is partially related to Sustainable Development Goals 13(Climate Action).This study might help to find out a new era of doing washed knitted product business without polluting the environment.
文摘Accompanying the development of social economy,the land use model of mountainous area,typically eco-weak area,is changing gradually. Here the establishment of eco-friendly land use model in mountainous area,will pioneer the model of sustainable development in that area. Concerning Qianjiang District of Chongqing Municipality,huge change of land use model,mainly embodied in the unceasing increase of construction land and gradual decrease of agricultural use land,has taken place in recent years. To explore the eco-friendly land use model in mountainous area,Qianjiang District was chosen as the study object in the present study. Via analyzing the changes in land use model,we found that related eco-environment restrictive factors mainly regional climatic change,soil texture,hydrological environment as well as soil erosion and land degradation,etc. And based on these results,we further analyzed the effect of land use change on eco-environment and the factors restricting the maintenance of eco-environment and regional development,finally put forward the counter measures for balancing land use and co-environment in mountainous area. The results will be important for the development of social economy and eco-system construction in Qianjiang District.
基金project CICECO-Aveiro Institute of Materials,refs. UIDB/50011/2020 & UIDP/50011/2020financed by national funds through the FCT/MEC.S.K.and A.K.were partly supported by FCT (Portugal) through the project "BioPiezo"-PTDC/ CTM-CTM/31679/2017(CENTRO-01-0145-FEDER-031679)+3 种基金supported by FCT,through the grant reference SFRH/BPD/117475/2016partly supported by FCT through the project "SelfMED" (POCI-01-0145FEDER-031132)funded by national funds (OE),through FCT-Fundagao para a Ciencia e a Tecnologia,I.P., in the scope of the framework contract foreseen in the numbers 4, 5,and 6 of the article 23,of the Decree-Law 57/2016,of August 29,changed by Law 57/2017,of July 19.supported by the Ministry of Education and Science of the Russian Federation in the framework of the Increase Competitiveness Program of NUST 《MISiS》 (No.K2-2019-015)
文摘Triboelectric nanogenerators(TENGs)are promising electric energy harvesting devices as they can produce renewable clean energy using mechanical excitations from the environment.Several designs of triboelectric energy harvesters relying on biocompatible and eco-friendly natural materials have been introduced in recent years.Their ability to provide customizable self-powering for a wide range of applications,including biomedical devices,pressure and chemical sensors,and battery charging appliances,has been demonstrated.This review summarizes major advances already achieved in the field of triboelectric energy harvesting using biocompatible and eco-friendly natural materials.A rigorous,comparative,and critical analysis of preparation and testing methods is also presented.Electric power up to 14 mW was already achieved for the dry leaf/polyvinylidene fluoride-based TENG devices.These findings highlight the potential of eco-friendly self-powering systems and demonstrate the unique properties of the plants to generate electric energy for multiple applications.
基金Funded by the National Natural Science Foundation of China,China(No.51438003)the National Key R&D Program of China,China(2018YFC0705400)
文摘Aiming to investigate the mix design of eco-friendly UHPC with supplementary cementitious materials and coarser aggregates, we comprehensively studied the workability, microstructure, porosity, compressive strength, flexural strength, and Young’s modulus of UHPC. Relationship between compressive strength and Young’s modulus was obtained eventually. It is found that the compressive strength, flexural strength, and Young’s modulus of UHPC increase by 19.01%, 10.81%, and 5.99%, respectively, when 40 wt% cement is replaced with supplementary cementitious materials. The relationship between compressive strength and Young’s modulus of UHPC is an exponential form.
文摘Indians have been considered as forerunners in the art of natural dyeing. Although indigenous knowledge system has been practiced over the years in the past, the use of natural dyes has diminished over generations due to lack of documentation and precise knowledge of the extracting and dyeing techniques. As a result, natural dyes are not commercially successful. Presently, all environmentally unfriendly synthetic compounds are used for dyeing textile materials. They are non-biodegradable, carcinogenic and generate water pollution as well as waste disposal problems. Natural dyes provide a reasonable solution to these problems. Thus, it is imperative to develop technology for extraction of natural dyes and for their application on textile materials. In this study, attempt has been made to extract natural dyes from a variety of plants sources (such as rhizomes of turmeric, Curcuma longa;fruits of harda, Terminalia chebula;petals of safflower, Carthamus tinctorius;roots of barberry, Berberis lycium etc.) using specific techniques. These dyes were tested for their dyeing potential on different textile materials (cotton, silk and wool). Dyeing was done using three different dyeing techniques (pre-, simultaneous- and post-mordanting) wherein different mordants such as alum, copper sulphate and ferrous sulphate etc., were used to fix dye on to the textile material. A rainbow of natural dyes was obtained with varied shades of each colour. Shade cards were prepared for each dye and the colour obtained varied depending on the type of the mordant applied and the mordanting technique used.
文摘Based on the Saudi Green initiative,which aims to improve the Kingdom’s environmental status and reduce the carbon emission of more than 278 million tons by 2030 along with a promising plan to achieve netzero carbon by 2060,NEOM city has been proposed to be the“Saudi hub”for green energy,since NEOM is estimated to generate up to 120 Gigawatts(GW)of renewable energy by 2030.Nevertheless,the Information and Communication Technology(ICT)sector is considered a key contributor to global energy consumption and carbon emissions.The data centers are estimated to consume about 13%of the overall global electricity demand by 2030.Thus,reducing the total carbon emissions of the ICT sector plays a vital factor in achieving the Saudi plan to minimize global carbon emissions.Therefore,this paper aims to propose an eco-friendly approach using a Mixed-Integer Linear Programming(MILP)model to reduce the carbon emissions associated with ICT infrastructure in Saudi Arabia.This approach considers the Saudi National Fiber Network(SNFN)as the backbone of Saudi Internet infrastructure.First,we compare two different scenarios of data center locations.The first scenario considers a traditional cloud data center located in Jeddah and Riyadh,whereas the second scenario considers NEOM as a potential cloud data center new location to take advantage of its green energy infrastructure.Then,we calculate the energy consumption and carbon emissions of cloud data centers and their associated energy costs.After that,we optimize the energy efficiency of different cloud data centers’locations(in the SNFN)to reduce the associated carbon emissions and energy costs.Simulation results show that the proposed approach can save up to 94%of the carbon emissions and 62%of the energy cost compared to the current cloud physical topology.These savings are achieved due to the shifting of cloud data centers from cities that have conventional energy sources to a city that has rich in renewable energy sources.Finally,we design a heuristic algorithm to verify the proposed approach,and it gives equivalent results to the MILP model.
基金financially supported by the National Natural Science Foundation of China (Grant number:51403239)
文摘The resistance of wood-fiber paper to water, grease, and water vapor is usually attained by immersing the base paper in hydrophobic oil, laminating with a plastic or metal film, or the application of a barrier coating. Oil impregnation and the addition of films may make the paper difficult to recycle or persistent in the environment owing to their strong binding force and nondegradability. Environmental concerns have attracted worldwide attention to eco-friendly barrier coatings. In this study, degradable polyvinyl alcohol(PVA) and kaolin clay pigment were used to prepare coatings that were applied to a base paper. By measuring the barrier properties of the coated paper, including the water absorptiveness(Cobb60 value), Hercules sizing degree, oil resistance(Kit rating), and water vapor transmission rate(WVTR), an optimal coating formulation and process were proposed. To examine the barrier mechanism of the PVA/kaolin clay coating, we characterized the coating microstructures using a scanning electron microscopy(SEM) and a mercury porosimeter. The results showed that the Cobb60 value and water vapor transmission rate of the coated paper decreased by 61.4% and 98.6%, respectively, compared with the base paper, for a pre-coating weight of 0.98 g/m^2 and a top-coating weight of about 3.23 g/m^2. Furthermore, the Hercules sizing degree rose by a factor of 337.2, while the oil resistance(Kit rating) increased from 0 to 12. The optimum drying temperature for a wet coating layer was found to be 170℃, and the optimum weight ratio of PVA to kaolin clay in the coating was determined to be 50∶50. It was assumed that the PVA/kaolin clay coating improved the smoothness of the paper considerably and decreased the pore size by filling the pores on the paper surface and forming an even film, thus enhancing the paper barrier performance. The coated paper also exhibited good repulpability.
文摘Lost circulation is one of the most important concerns of the drilling industry, causing excessive expenditure and increasing the non-productive drilling time. In this study, various lost circulation materials(LCMs) were used to control the lost circulation of two types of drilling fluids, bentonite mud and a new eco-friendly mud, named RIA-X, which has a remarkable effect on decreasing the amount of lost circulation in fractured and highly permeable reservoirs. The Bridging Material Test(BMT) apparatus was used to investigate the effectiveness of various LCMs in fractures of various sizes and to select the LCM and combination with the best performance. The use of three-dimensional fractures is one of the most notable points of this work, which makes the experimental conditions similar to those of real wells. The lost control performance of the new eco-friendly LCMs in RIA-X mud was tested in field. The outcomes show that the designed LCMs are able to control severe lost circulation that regular processes such as cementing or drilling with foam cannot deal with.
文摘An eco-friendly synthesis of cyclododecanone (CDON) from cyclododecatriene (CDT) is described. Selec- tive epoxidation of CDT with hydrogen peroxide using hexadecyl trimethyl ammonium heteropolyphospha- totungstate [(n-C16H33NMe3)3PW4O16, HAHPT] as catalyst and water as solvent followed by the hydrogena- tion on Raney nickel catalyst gave cyclododecanol (CDOL). The latter was oxidized with hydrogen peroxide using HAHPT as catalyst and a mixture of water and t-butanol as solvent to afford CDON. The total yield was 53.4% under the optimum reaction conditions.
基金This paper was financially supported by the National Natural Science Foundation of China(52038001,52122809,51908058).
文摘The major contemporary in road pavement engineering is related to the creation of green and sustainable infrastructures,e.g.,reduction of environmental impacts,increase in traffic safety,and transportation efficiency,etc.This review presents the recent trends in research and the technical solutions developed so far to address these challenges.After the analysis of research status in the past decades,a novel technology system of eco-friendly pavements is proposed considering two solutions,materials modification and structure improvement.The construction of an eco-friendly pavement can be achieved thanks to several different technologies ensuring permeable,noise-reducing,self-luminous,and exhaust-decomposing properties as well as apporting lower heat absorbing and enhanced anti-/de-icing characteristics.A systematic review of these technologies is presented pivoting on four main aspects:technical principle,material and structural composition,performance evaluation,and engineering application.The current trend in road engineering is combining the pavement infrastructure with various eco-friendly functions,e.g.,water permeability,noise reduction,low heat absorption,exhaust gas decomposition,and anti-/de-icing.Finally,the review lists the drawbacks of the existing technologies,including high cost,single function,etc.,and depicts the future developing direction and architecture of the next generation of eco-friendly pavements in which the road infrastructure should have more environmentally friendly functions than the existing technology.
文摘During the production of palm oil,a significant amount of waste is generated.However,because of inefficient handling and utilization,these wastes are becoming a larger issue.As a result,one initiative is to use these wastes in the pavement industry as sustainable materials.However,there is still a lack of understanding about the wider incorporation of palm oil waste in asphalt pavement and its performance.This study examines existing literature on the use of various wastes in the pavement industry,including palm oil clinker(POC),palm oil fibre(POF),palm kernel shell(PKS),and palm oil fuel ash(POFA).As a result,this paper presents a systematic review and scientometric investigation of related study publications on many uses of palm oil waste in the asphalt pavement industry and its performance from 2009 to 2022.The VOS viewer application was used to conduct the sciento-metric study analysis.The relationship between interactions detected in co-authored country studies cited sources of co-citation,and the keyword of the co-occurrence and publication source enabled the identification of the research gap.According to the systematic literature review,40%–60% POC can be used to fine aggregate for optimal performance,while 0–100%PKS can be used to replace coarse aggregate.In addition,50%–80% POFA or POC fine(POCF)can be used as a filler replacement,5%–8% POCF or POFA as a bitumen modifier,and 0.3% POF as a stabilizing additive.Furthermore,the study demonstrates that the safety of utilizing wastes with more than 50% CO_(2) emissions can be curtailed with minimal heavy metal leaching and radioactivity levels.The scientometric analysis may encourage researchers to seek out gaps in the literature that will aid in the long-term,multifaceted use of palm oil wastes in the asphalt pavement industry.Furthermore,the study recommends employing and researching the enormous potential of using palm oil waste in the pavement sectors because they are more sustainable and have better performance.However,there are some barriers to using palm oil waste in the asphalt pavement industry,such as a lack of design standards and guidelines,inefficient raw material pro-cessing conversion facilities,and large-scale production equipment.
文摘The global oil and gas industry has a long standing initiative to develop and use the most environment friendly solutions in the exploration and exploitation of oil and gas resources to prevent any damage or degradation of other marine and terrestrial resources. This is reflected by increasing research in academics, research institutes and organizations around the globe to develop better and more environment friendly base fluids, viscosifiers, fluid loss additives, emulsifiers, lubricants, etc. to protect the local, regional and global environments, eco-systems, habitats and also the OHS of workers and professionals working in the oil and gas industry. This paper describes the development, testing and evaluation of several novel additives to demonstrate their suitability for oil and gas field applications to avoid any negative impact to the surrounding environment. Experimental results indicate that the newly developed additives provide desirable, similar or better performance with respect to conventional additives used by the industry and thus demonstrate their suitability for application in aqueous and non-aqueous fluid design. The plant-based organic additive identified to use as an ecofriendly viscosifier for aqueous mud system can also control the fluid loss behavior of clay free system and thus can act as a bi-functional additive. Several waste vegetable oil-based eco-friendly additives have been developed for their application as spotting fluids, base oil and emulsifiers for invert emulsion oil based mud. These additives have similar or better technical performance than the equivalents and the eco-friendly nature of the mud additives demonstrates their ability to perform the functional tasks with better protection of the surrounding environments.
文摘Hot metal transfer ladles were historically lined with high alumina refractories because of compatibility of high alumina refractories with the highly acidic slag, which is transferred .from the iron making plant along with hot metal. With the introduction of higher capacity ladles, technological advancement in the process and increased productivity, calls for a higher campaign life of hot metal ladles, which could not be performed by ordinary high alumina refractories. Resin bonded Al2O3- SiC-C (hereinafter ASC ) bricks gradually developed which at present taking place replacing the conventional refractories. Considerable work has been carried out in developing the ASC refractory to reach the present state. However, for higher capacity ladles still there is a lot of scope for improvement. The present paper deals with the newly developed ASC bricks, which was used in 165 ton capacity hot metal ladles in one European plant and has given a substantial increase in performance. But, the customer was not fuUy satisfied since the brick was reported to produce smokes during preheating of the ladle. In the subsequent supply the smoke generation problem was taken care by adjusting the binders and additives and eco-friendly bricks were re-engineered and supplied to the same plant, which also performed splendidly and created all time record in their plant history.
文摘Four components have been reacted in water and in the presence of N-morpholine yielded pyrnopyrazole as a simple substrate for novel N2-acyclonucleoside derivatives of fused pyranopyrazole. The sodium salt of fused pyranopyrazole reacted with halo alcohols led to the formation of new scaffolds from fused pyranopyrazole derivatives. All newly prepared compounds are characterized spectroscopically.
基金National Key Research and Development Program of China(No.2016YFB0302900)。
文摘This work focused on effects of an eco-friendly carrier JYK on thermal properties,dye uptake,color yield(K/S values)and color fastness of recycled polyester knit fabrics.The study also explored optimization of the low-temperature carrier(LTC)dyeing and compared its dyeing performance to the high-temperature and high-pressure(HTHP)dyeing.Results showed that the eco-friendly carrier JYK had an obvious plasticizing effect on recycled polyester,which significantly reduced the glass transition temperature,thereby reducing the dyeing temperature and benefiting low-temperature dyeing.The optimal dyeing conditions were determined as follows:the disperse dye was 2%on weight of fabric(owf)and the eco-friendly carrier JYK was 2%owf at 98℃dyeing temperature for 60 min.Compared with the HTHP dyeing,there was no significant difference in the K/S values and color fastness of recycled polyester fabrics dyed in the low-temperature method which demonstrated that the low-temperature method could be totally accepted.This study indicated that the low-temperature dyeing with a carrier JYK could be an effective and sustainable method for dyeing recycled polyester.