Soil tensile strength is a critical parameter governing the initiation and propagation of tensile cracking.This study proposes an eco-friendly approach to improve the tensile behavior and crack resistance of clayey so...Soil tensile strength is a critical parameter governing the initiation and propagation of tensile cracking.This study proposes an eco-friendly approach to improve the tensile behavior and crack resistance of clayey soils.To validate the feasibility and efficacy of the proposed approach,direct tensile tests were employed to determine the tensile strength of the compacted soil with different W-OH treatment concentrations and water contents.Desiccation tests were also performed to evaluate the effectiveness of W-OH treatment in enhancing soil tensile cracking resistance.During this period,the effects of W-OH treatment concentration and water content on tensile properties,soil suction and microstructure were investigated.The tensile tests reveal that W-OH treatment has a significant impact on the tensile strength and failure mode of the soil,which not only effectively enhances the tensile strength and failure displacement,but also changes the brittle failure behavior into a more ductile quasi-brittle failure behavior.The suction measurements and mercury intrusion porosimetry(MIP)tests show that W-OH treatment can slightly reduce soil suction by affecting skeleton structure and increasing macropores.Combined with the microstructural analysis,it becomes evident that the significant improvement in soil tensile behavior through W-OH treatment is mainly attributed to the W-OH gel's ability to provide additional binding force for bridging and encapsulating the soil particles.Moreover,desiccation tests demonstrate that W-OH treatment can significantly reduce or even inhibit the formation of soil tensile cracking.With the increase of W-OH treatment concentration,the surface crack ratio and total crack length are significantly reduced.This study enhances a fundamental understanding of eco-polymer impacts on soil mechanical properties and provides valuable insight into their potential application for improving soil crack resistance.展开更多
DEAR EDITOR,The macaques belongs to the genus Macaca,consisting of at least 23 species(Roos et al.,2019).Among all congeners,rhesus macaque(M.mulatta)is regarded as the widest distributed non-human primate species in ...DEAR EDITOR,The macaques belongs to the genus Macaca,consisting of at least 23 species(Roos et al.,2019).Among all congeners,rhesus macaque(M.mulatta)is regarded as the widest distributed non-human primate species in the world.Its native range spans in East Asia,northern part of Southeast Asia and Indian subcontinent(Liu et al.,2018).Listed as“Least Concern”on the IUCN Red List,this species is locally threatened due to habitat loss and degradation in China and Thailand(Lu et al.,2018).Nevertheless,pet release resulting in hybridization with other congeners(e.g.,rhesus macaque×crab-eating macaque(M.fascicularis))was documented in Hong Kong SAR,China(Wong&Ni,2000),threatening genetic integrity of wild populations.展开更多
Non-degradable polymers cause serious environmental pollution problem,such as the widely-used while unrecyclable coatings which significantly affect the overall degradation performance of products.It is imperative and ...Non-degradable polymers cause serious environmental pollution problem,such as the widely-used while unrecyclable coatings which significantly affect the overall degradation performance of products.It is imperative and attractive to develop biodegradable functional coatings.Herein,we proposed a novel strategy to successfully prepare biodegradable,thermoplastic and hydrophobic coatings with high transparence and biosafety by weakening the interchain interactions between cellulose chain.The natural cellulose and cinnamic acid were as raw materials.Via reducing the degree of polymerization(DP)of cellulose and regulating the degree of substitution(DS)of cinnamate moiety,the obtained cellulose cinnamate(CC)exhibited not only the thermalflow behavior but also good biodegradability,which solves the conflict between the thermoplasticity and biodegradability in cellulose-based materials.The glass transition temperature(T_(g))and thermalflow temperature(T_(f))of the CC could be adjusted in a range of 150–200℃ and 180–210℃,respectively.The CC with DS<1.2 and DP≤100 degraded more than 60%after an enzyme treatment for 7 days,and degraded more than 80%after a composting treatment for 42 days.Furthermore,CC had no toxicity to human epidermal cells even at a high concentration(0.5 mg mL^(-1)).In addition,CC could be easily fabricated into multifunctional coating with high hydrophobicity,thermal adhesion and high transparence.Therefore,after combining with cellophane and paperboard,CC coating with low DP and DS could be used to prepare fully-biodegradable heat-sealing packaging,art paper,paper cups,paper straws and food packaging boxes.展开更多
Considerable research efforts have been dedicated to investigating the side reactions and the growth of Zn dendritic in aqueous zinc-ion batteries(AZIBs).The incorporation of organic solvents as additives in electroly...Considerable research efforts have been dedicated to investigating the side reactions and the growth of Zn dendritic in aqueous zinc-ion batteries(AZIBs).The incorporation of organic solvents as additives in electrolytes has yielded highly promising results.Nevertheless,their pervasive use has been hindered by concerns regarding their toxicity,flammability,and economic viability.Herein,we propose the utilization of γ-valerolactone(γ-V),a novel eco-friendly solvent,as an alternative for conventional organic additives to improve the performance of Zn anode.Experimental investigations and theoretical analyses have verified that γ-V additives can diminish the Zn^(2+)-desolvation energy and enhance Zn^(2+) transport kinetics.The adsorbed γ-V molecules modulate the nucleation and diffusion of Zn^(2+),facilitating Zn growth along the(002) crystal plane,thus inhibiting dendrite formation and side reactions.Consequently,the modified electrolyte with 3% γ-V exhibit highly reversible cycling for 2800 h at1 mA cm^(-2) and 1 mA h cm^(-2) in Zn//Zn symmetric cell.The Zn//KVOH coin cells deliver a capacity retention of 74.7% after 1000 cycles at 5 A g^(-1).The Zn//KVOH pouch cells maintain a capacity retention of78.7% over 90 cycles at 3 A g^(-1).Notably,the γ-V additives also effectively alleviate the self-discharge phenomenon.This work provides valuable insights on the development of aqueous zinc-ion batteries with superior safety through the modulation of electrolytes using eco-friendly additives.展开更多
Changes in vegetation status generally also represents changes in the ecological health of islands and reefs(IRs).However,studies are limited of drivers and trends of vegetation change of Nansha Islands,China and how ...Changes in vegetation status generally also represents changes in the ecological health of islands and reefs(IRs).However,studies are limited of drivers and trends of vegetation change of Nansha Islands,China and how they relate to climate change and human activities.To resolve this limitation,we studied changes to the Normalized Difference Vegetation Index(NDVI)vegetation-greenness index for 22 IRs of Nansha Islands during normal and extreme conditions.Trends of vegetation greenness were analyzed using Sen's slope and Mann-Kendall test at two spatial scales(pixel and island),and driving factor analyses were performed by time-lagged partial correlation analyses.These were related to impacts from human activities and climatic factors under normal(temperature,precipitation,radiation,and Normalized Difference Built-up Index(NDBI))and extreme conditions(wind speed and latitude of IRs)from 2016 to 2022.Results showed:1)among the 22 IRs,NDVI increased/decreased significantly in 15/4 IRs,respectively.Huayang Reef had the highest NDVI change-rate(0.48%/mon),and Zhongye Island had the lowest(–0.29%/mon).Local spatial patterns were in one of two forms:dotted-form,and degradation in banded-form.2)Under normal conditions,human activities(characterized by NDBI)had higher impacts on vegetation-greenness than other factors.3)Under extreme conditions,wind speed(R^(2)=0.2337,P<0.05)and latitude(R^(2)=0.2769,P<0.05)provided limited explanation for changes from typhoon events.Our results provide scientific support for the sustainable development of Nansha Islands and the United Nations‘Ocean Decade’initiative.展开更多
The South China Sea is a hotspot for regional climate research.Over the past 40 years,considerable improvement has been made in the development and utilization of the islands in the South China Sea,leading to a substa...The South China Sea is a hotspot for regional climate research.Over the past 40 years,considerable improvement has been made in the development and utilization of the islands in the South China Sea,leading to a substantial change in the land-use of the islands.However,research on the impact of human development on the local climate of these islands is lacking.This study analyzed the characteristics of local climate changes on the islands in the South China Sea based on data from the Yongxing Island Observation Station and ERA5 re-analysis.Furthermore,the influence of urbanization on the local climate of the South China Sea islands was explored in this study.The findings revealed that the 10-year average temperature in Yongxing Island increased by approximately 1.11℃from 1961 to 2020,and the contribution of island development and urbanization to the local warming rate over 60 years was approximately 36.2%.The linear increasing trend of the annual hot days from 1961–2020 was approximately 14.84 days per decade.The diurnal temperature range exhibited an increasing trend of 0.05℃per decade,whereas the number of cold days decreased by 1.06days per decade.The rapid increase in construction on Yongxing Island from 2005 to 2021 led to a decrease in observed surface wind speed by 0.32 m s^(-1)per decade.Consequently,the number of days with strong winds decreased,whereas the number of days with weak winds increased.Additionally,relative humidity exhibited a rapid decline from 2001 to 2016 and then rebounded.The study also found substantial differences between the ERA5 re-analysis and observation data,particularly in wind speed and relative humidity,indicating that the use of re-analysis data for climate resource assessment and climate change evaluation on island areas may not be feasible.展开更多
This study describes the gradient analysis of the freshwater macroinvertebrate assemblages in eight streams of Tenerife and La Gomera (Canary Islands) over a 16-year period. During this period, a total of 75 taxa belo...This study describes the gradient analysis of the freshwater macroinvertebrate assemblages in eight streams of Tenerife and La Gomera (Canary Islands) over a 16-year period. During this period, a total of 75 taxa belonging to 34 taxonomic families were found. Endemism has an important presence in the streams on both islands, especially regarding Trichoptera and Coleoptera. The overall status of freshwater macroinvertebrates is rather uncertain as recent data on these communities are scarce and focused on a limited number of sites. Overexploitation of aquifers and the diversion of natural water flows for irrigation have resulted in the drying up of numerous natural streams, inevitably endangering the fauna that inhabits them. A reduction in number and abundance of endemic and sensitive species was observed in the majority of the sampled streams resulting in a lower ecological rating. Therefore, it is proposed that the protection of streams of high conservation value is essential to conserve freshwater macroinvertebrate fauna native to the Canary Islands.展开更多
We investigate the nonlocal transport modulated by Coulomb interactions in devices comprising two interacting Majorana wires,where both nanowires are in proximity to a mesoscopic superconducting(SC)island.Each Majoran...We investigate the nonlocal transport modulated by Coulomb interactions in devices comprising two interacting Majorana wires,where both nanowires are in proximity to a mesoscopic superconducting(SC)island.Each Majorana bound state(MBS)is coupled to one lead via a quantum dot with resonant levels.In this device,the nonlocal correlations can be induced in the absence of Majorana energy splitting.We find that the negative differential conductance and giant current noise cross correlation could be induced,due to the interplay between nonlocality of MBSs and dynamical Coulomb blockade effect.This feature may provide a signature for the existence of the MBSs.展开更多
As one of the micro-blocks dispersed in the South China Sea(SCS), the basement of the Xisha Islands has rarely been drilled because of the thick overlying Cenozoic sediments, which has led to a confused understanding ...As one of the micro-blocks dispersed in the South China Sea(SCS), the basement of the Xisha Islands has rarely been drilled because of the thick overlying Cenozoic sediments, which has led to a confused understanding of the pre-Cenozoic basement of the Xisha Islands. Well CK-1, a kilometer-scale major scientific drill in the Xisha Islands in the northwestern SCS, penetrated thick reefal limestone(0–888.4 m) and the underlying basement rocks(888.4–901.4 m). In this study, we present the zircon U-Pb ages of basement basaltic pyroclastic rocks from Well CK-1 in the Xisha Islands of the northwestern SCS to investigate the basement nature of the Xisha microblock. The basement of Well CK-1 consists of basaltic pyroclastic rocks on the seamount. The zircon grains yielded apparent ages ranging from ca. 2 138.9 Ma to ca. 36 Ma. The old group of zircon grains from Well CK-1 was considered to be inherited zircons. Two Cenozoic zircons gave a weighted mean 206Pb/238U age of(36.3 ± 1.1) Ma,Mean Squared Weighted Deviations(MSWD) = 1.2, which may represent the maximum age of the volcano eruption. The Yanshanian inherited zircons(116.9–105.7 Ma and 146.1–130.2 Ma) from Well CK-1 are consistent with the zircons from Well XK-1, indicating that the basement of Chenhang Island may be similar to that of Well XK-1. We propose that the Xisha micro-block may have developed on a uniform Late Jurassic metamorphic crystalline basement, intruded by Cretaceous granitic magma.展开更多
Few studies have investigated the spatial patterns of the air temperature urban heat island(AUHI)and its controlling factors.In this study,the data generated by an urban climate model were used to investigate the spat...Few studies have investigated the spatial patterns of the air temperature urban heat island(AUHI)and its controlling factors.In this study,the data generated by an urban climate model were used to investigate the spatial variations of the AUHI across China and the underlying climate and ecological drivers.A total of 355 urban clusters were used.We performed an attribution analysis of the AUHI to elucidate the mechanisms underlying its formation.The results show that the midday AUHI is negatively correlated with climate wetness(humid:0.34 K;semi-humid:0.50 K;semi-arid:0.73 K).The annual mean midnight AUHI does not show discernible spatial patterns,but is generally stronger than the midday AUHI.The urban–rural difference in convection efficiency is the largest contributor to the midday AUHI in the humid(0.32±0.09 K)and the semi-arid(0.36±0.11 K)climate zones.The release of anthropogenic heat from urban land is the dominant contributor to the midnight AUHI in all three climate zones.The rural vegetation density is the most important driver of the daytime and nighttime AUHI spatial variations.A spatial covariance analysis revealed that this vegetation influence is manifested mainly through its regulation of heat storage in rural land.展开更多
Ion temperature gradient(ITG)-driven turbulence with embedded static magnetic islands is simulated by utilizing a gyrokinetic theory-based global turbulence transport code(GKNET)in this work.Different from the traditi...Ion temperature gradient(ITG)-driven turbulence with embedded static magnetic islands is simulated by utilizing a gyrokinetic theory-based global turbulence transport code(GKNET)in this work.Different from the traditional equilibrium circular magnetic-surface average(EMSA)method,an advanced algorithm that calculates the perturbed magnetic-surface average(PMSA)of the electric potential has been developed to precisely deal with the zonal flow component in a non-circular magnetic surface perturbed by magnetic islands.Simulations show that the electric potential vortex structure inside islands induced by the magnetic islands is usually of odd parity when using the EMSA method.It is found that the odd symmetry vortex can transfer into an even one after a steep zonal flow gradient,i.e.the flow shear has been built in the vicinity of the magnetic islands by adopting the PMSA algorithm.The phase of the potential vortex in the poloidal cross section is coupled with the zonal flow shear.Such an electric potential vortex mode may be of essential importance in wide topics,such as the turbulence spreading across magnetic islands,neoclassical tearing mode physics,and also the interaction dynamics between the micro-turbulence and MHD activities.展开更多
Objective:To investigate the effect of Moringa oleifera leaf extract on semen quality parameters in Teressa goat buck.Methods:A total of 25 semen samples from six bucks were selected for the study.Spermatozoa of 150...Objective:To investigate the effect of Moringa oleifera leaf extract on semen quality parameters in Teressa goat buck.Methods:A total of 25 semen samples from six bucks were selected for the study.Spermatozoa of 150×10^(6) were incubated in 0,300,500 and 700μg of leaf extract as groupⅠ,Ⅱ,Ⅲ and Ⅳ,respectively.Liquid stored semen samples were analysed for motility,viability,total sperm abnormalities,plasma membrane,acrosomal and nuclear integrities,seminal plasma intracellular enzymes[aspartate aminotransferase(AST),alanine aminotransferase(ALT)and lactate dehydrogenase(LDH)]and total antioxidant capacity(TAC)and spermatozoa malondialdehyde(MDA)and cholesterol efflux in comparison with the control group(groupⅠ)for up to 72 h.Results:Moringa oleifera leaf extract(500μg/150×10^(6) spermatozoa)-treated semen had significantly higher motility,viability,plasma membrane,acrosomal and nuclear integrities,and TAC(P<0.05),and had significantly lower total sperm abnormalities,AST,ALT,LDH,MDA production and cholesterol efflux compared to those in other Moringa oleifera leaf extract treated(300 or 700μg/150×10^(6) spermatozoa)and control groups at different hours of liquid storage(P<0.05).Semen quality parameters and TAC showed an increasing trend and total sperm abnormalities,MDA production,leakage of intra-cellular enzymes and cholesterol efflux showed a decreasing trend from group Ⅰto group Ⅲand then an opposite trend from group Ⅲ to group Ⅳ at different hours of liquid storage.Conclusions:Moringa oleifera leaf extract 500μg/150×10^(6) spermatozoa can be used for liquid semen preservation in Teressa goat at Andaman and Nicobar Islands.展开更多
Lignin,lignosulfonate,and synthesized phosphorylated lignosulfonate were introduced as greenfillers in citric acid-sucrose adhesives for bonding particleboard fabricated from areca leaf sheath(ALS).The characteristics ...Lignin,lignosulfonate,and synthesized phosphorylated lignosulfonate were introduced as greenfillers in citric acid-sucrose adhesives for bonding particleboard fabricated from areca leaf sheath(ALS).The characteristics of particleboards were compared to that of ultralow emitting formaldehyde(ULEF-UF).Thefillers derived from Eucalyptus spp.kraft-lignin were added forflame retardancy enhancement.10%of each lignin and modified lig-nin was added into the ULEF-UF and citric acid-sucrose bonded particleboards.Analyses applied to particle-boards included thermal characteristics,X-ray diffraction analysis(XRD),morphological properties,Fourier transform infrared spectroscopy(FTIR),as well as physical,mechanical,andfire resistance characteristics of the laboratory-fabricated particleboards.Lignin and modified lignin resulted in improved thermal stability of the composites bonded with ULEF-UF while the improvement in the particleboard bonded with citric acid-sucrose was not significant.The introduction offiller exerted a higher influence on the UF-bonded particleboards compared to composites fabricated with citric acid-sucrose.Generally,the presence of lignin,lignosulfonate,and phosphorylated lignosulfonate enhanced the mechanical strength of the ULEF-bonded particleboards,although their dimensional stability has deteriorated.Markedly,the use of lignin and lignosulfonate enhanced thefire resis-tance of the particleboards produced with lower observed weight loss.All laboratory particleboards exhibited satisfactoryfire resistance,attaining a V-0 rating in according to the UL-94 standard.展开更多
Mountain biodiversity is of great importance to biogeography and ecology.However,it is unclear what ecological and evolutionary processes best explain the generation and maintenance of its high levels of species diver...Mountain biodiversity is of great importance to biogeography and ecology.However,it is unclear what ecological and evolutionary processes best explain the generation and maintenance of its high levels of species diversity.In this study,we determined which of six common hypotheses(e.g.,climate hypotheses,habitat heterogeneity hypothesis and island biogeography theory)best explain global patterns of species diversity in Rhododendron.We found that Rhododendron diversity patterns were most strongly explained by proxies of island biogeography theory(i.e.,mountain area)and habitat heterogeneity(i.e.,elevation range).When we examined other relationships important to island biogeography theory,we found that the planimetric area and the volume of mountains were positively correlated with the Rhododendron diversity,whereas the‘mountains-to-mainland’distance was negatively correlated with Rhododendron diversity and shared species.Our findings demonstrate that Rhododendron diversity can be explained by island biogeography theory and habitat heterogeneity,and mountains can be regarded as islands which supported island biogeography theory.展开更多
Neoproterozoic island arc assemblage of the Arabian–Nubian Shield(ANS)in the Eastern Desert(ED)of Egypt comprises juvenile suites of metavolcanics(MV),large amounts of meta-sedimentary rocks(MS),and voluminous metaga...Neoproterozoic island arc assemblage of the Arabian–Nubian Shield(ANS)in the Eastern Desert(ED)of Egypt comprises juvenile suites of metavolcanics(MV),large amounts of meta-sedimentary rocks(MS),and voluminous metagabbros-diorites(MGD)and syn-tectonic intrusions of older granitoids(OG).We report here the updates of these four rock units in terms of classification,distribution,chemical characteristics,geodynamic evolution,metamorphism,and ages.In addition,we discuss these integrated data to elucidate a reasonable and reliable model for crustal evolution in the ANS.The main features of these rock units indicate their relation to each other and the geodynamic environment dominated by early immature oceanic island arcs to primitive continental arcs.Integrated information of the island arc metavolcanic and plutonic rocks(gabbros,diorites,tonalites,and granodiorites)furnish evidence of the genetic relationships.These include proximity and a coeval nature in the field;all protolith magmas are subalkaline in nature following calc-alkaline series with minor tholeiitic affinities;common geochemical signature of the arc rocks and subduction-related magmatism;their similar enrichment in LREEs;and similar major element compositions with mafic melts derived from metasomatized mantle wedge.The volcano-sedimentary and the OG rocks underwent multiphase deformation events whereas the MGD complexes deformed slightly.Based on the magmatic,sedimentological,and metamorphic evolutions constrained by geochronological data as well as the progressive evolutionary trend from extensional to compressional regimes,a possible gradual decrease in the subducted slab dip angle is the most infl uential in any geodynamic model for arc assemblage in the ED of Egypt.展开更多
Although accelerated urbanization has led to economic prosperity,it has also resulted in urban heat island effects.Therefore,identifying methods of using limited urban spaces to alleviate heat islands has become an ur...Although accelerated urbanization has led to economic prosperity,it has also resulted in urban heat island effects.Therefore,identifying methods of using limited urban spaces to alleviate heat islands has become an urgent issue.In this study,we assessed the spatiotemporal evolution of urban heat islands within the central urban area of Fuzhou City,China from 2010 to 2019.This assessment was based on a morphological spatial pattern analysis(MSPA)model and an urban thermal environment spatial network constructed us-ing the minimum cumulative resistance(MCR)model.Optimization measures for the spatial network were proposed to provide a theor-etical basis for alleviating urban heat islands.The results show that the heat island area within the study area gradually increased while that of urban cold island area gradually decreased.The core area was the largest of the urban heat island patch landscape elements with a significant impact on other landscape elements,and represented an important factor underlying urban heat island network stability.The thermal environment network revealed a total of 197 thermal environment corridors and 93 heat island sources.These locations were then optimized according to the current land use,which maximized the potential of 1599.83 ha.Optimization based on current land use led to an increase in climate resilience,with effective measures showing reduction in thermal environment spatial network structure and function,contributing to the mitigation of urban heat island.These findings support the use of current land use patterns during urban heat island mitigation measure planning,thus providing an important reference basis for alleviating urban heat island effects.展开更多
Changdao Island,a hidden gem in east China’s Shandong Province,features breathtaking nature.As the sun cuddles the horizon,the island’s azure sky provides a flawless backdrop to an exquisite panorama.Jagged cliffs c...Changdao Island,a hidden gem in east China’s Shandong Province,features breathtaking nature.As the sun cuddles the horizon,the island’s azure sky provides a flawless backdrop to an exquisite panorama.Jagged cliffs carved by centuries of endless waves stand guard along the shoreline,their rocky silhouettes seemingly frozen in time,summoning ancient majesty.Against this dramatic backdrop,flocks of seagulls take flight,their ivory wings catching the golden hues of the sun,creating an enchanting ballet in the sky.The air is filled with the gentle cries of these graceful birds,enhancing the island’s serenity.This harmonious blend of nature’s elements,from the sapphire sea to the towering cliffs and the mesmerizing flight of seagulls,makes Changdao Island an artistic masterpiece painted by the hand of mother nature herself.展开更多
In recent years,there has been a significant acceleration in the thinning,calving and retreat of the Pine Island Ice Shelf(PIIS).The basal channels,results of enhanced basal melting,have the potential to significantly...In recent years,there has been a significant acceleration in the thinning,calving and retreat of the Pine Island Ice Shelf(PIIS).The basal channels,results of enhanced basal melting,have the potential to significantly impact the stability of the PIIS.In this study,we used a variety of remote sensing data,including Landsat,REMA DEM,ICESat-1 and ICESat-2 satellite altimetry observations,and Ice Bridge airborne measurements,to study the spatiotemporal changes in the basal channels from 2003 to 2020 and basal melt rate from 2010 to 2017 of the PIIS under the Eulerian framework.We found that the basal channels are highly developed in the PIIS,with a total length exceeding 450 km.Most of the basal channels are ocean-sourced or groundingline-sourced basal channels,caused by the rapid melting under the ice shelf or near the groundingline.A raised seabed prevented warm water intrusion into the eastern branch of the PIIS,resulting in a lower basal melt rate in that area.In contrast,a deepsea trough facilitates warm seawater into the mainstream and the western branch of the PIIS,resulting in a higher basal melt rate in the main-stream,and the surface elevation changes above the basal channels of the mainstream and western branch are more significant.The El Ni?o event in 2015–2016 possibly slowed down the basal melting of the PIIS by modulating wind field,surface sea temperature and depth seawater temperature.Ocean and atmospheric changes were driven by El Ni?o,which can further explain and confirm the changes in the basal melting of the PIIS.展开更多
The fishing survey station located in the warm waters of the East China Sea is one of the abundant fishery resources of waters;with a large number of economic fish breeding grounds and economic juvenile feeding ground...The fishing survey station located in the warm waters of the East China Sea is one of the abundant fishery resources of waters;with a large number of economic fish breeding grounds and economic juvenile feeding grounds. Several fish species according to this bottom trawl survey results which appear in the annual survey from winter to autumn give us a total of 58 species, which have appeared throughout the year. But the vast majority of species appears only in certain seasons, according to the sea fish survey and based on seasonal migratory species or species mainly small endemic species. The survey of fish is tropical and subtropical warm water species and warm temperate species, and the history of the area has several types of 397 different species. There are many reasons, in addition to recent years, human disturbance and adverse consequences of environmental changes brought about, but also with the relevant sampling methods and sampler time, the survey sampled only trawl based, from Ping yang Ocean and Fisheries Bureau, the waters are still other jobs method net, gill nets, fishing industry, etc. Survey results show that the type of fish in the summer (58 species) > spring (55 species) > winter (51 species) > autumn (42 species). The type of season was among spring to summer rose, summer to autumn decline. The survey found that in the reef area of the Nanji Islands, no one species of fish is the dominant species throughout the year (according to the dominant species, each species is dominant only in one season). From the dominant species turnover accounting for the four seasons, in winter it has 53.72% of the total biomass or annual biomass, spring it has 41.53% of the overall biomass, summer it has 31.85% and autumn it has 38.56% of total biomass. Visible, seasonal succession of dominant species of fish phenomenon is very obvious, especially in the spring and winter, summer transfers dominate species at this stage show the greatest change, but winter, the transfer of this dominant species changes in minimal. Seasonal changes from biomass and the average annual marine fish survey biomass were 4832.25 g/h. From different seasons, the average biomass in winter (10779.88 g/h) > of the average biomass in spring (3624.1 g/hour) > of the mean biomass in autumn (3158 g/h) > the average Biomass in summer (1767 g/h). All of them show significant seasonal variation of the biomass, in winter and spring, the biomass is generally not high, but significantly higher than in the summer and autumn seasons. Each season, around the coast of southern Zhejiang, is less than the biomass and other catches off, which involves investigating sea location, size range, and the survey ship different network related tools. Another change from the area of biomass, some studies found that the survey of four-season fish of waters above the biological capacity of several kilograms only in some stations, namely stations and the highest biomass in summer appeared in stations 3, 7 and 11. In autumn the highest biomass appeared in stations 3, 6, 20 and 23.展开更多
Taking the pilgrimage,tourism and cultural island of Meizhou Island as an example,the evaluation index system of the coupling and coordinated development of“Mazu culture,socio-economy,eco-environment”(MSE)compound s...Taking the pilgrimage,tourism and cultural island of Meizhou Island as an example,the evaluation index system of the coupling and coordinated development of“Mazu culture,socio-economy,eco-environment”(MSE)compound system was constructed.The index weights were determined by AHP-entropy method,and the coupling degree,coordinated degree,comprehensive evaluation index and grey correlation degree of MSE system of Mazu Island from 2012 to 2022 were measure.The results showed that:(1)the comprehensive evaluation indexes of the three subsystems was on the rise in general,but the evaluation index of the ecological subsystems increased relatively slowly.(2)The coupling degree was only in the running-in stage in 2012,and the other years were in the coordinated coupling stage.(3)The coupling coordination degree increased from 0.35 in 2012 to 0.82 in 2022,the coupling coordination level was changed from mild imbalance to good coordination.(4)Through the comparison of grey correlation degree,the 24 indexes in the evaluation index system had great influence on the coupling coordination degree of MSE system.The coupling coordination degree was closely related to the development of socio-economy and the spread of Mazu culture.With the rapid development of tourism brought about by the spread of Mazu culture,the pressure on the ecological environment will be increasing.Compared with the rapid growth of tourism and economy,it is equally important to strengthen environmental protection and pay attention to the quality of ecological environment development.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.41925012,42230710)Key Laboratory Cooperation Special Project of Western Cross Team of Western Light,Chinese Academy of Sciences(Grant No.xbzg-zdsys-202107).
文摘Soil tensile strength is a critical parameter governing the initiation and propagation of tensile cracking.This study proposes an eco-friendly approach to improve the tensile behavior and crack resistance of clayey soils.To validate the feasibility and efficacy of the proposed approach,direct tensile tests were employed to determine the tensile strength of the compacted soil with different W-OH treatment concentrations and water contents.Desiccation tests were also performed to evaluate the effectiveness of W-OH treatment in enhancing soil tensile cracking resistance.During this period,the effects of W-OH treatment concentration and water content on tensile properties,soil suction and microstructure were investigated.The tensile tests reveal that W-OH treatment has a significant impact on the tensile strength and failure mode of the soil,which not only effectively enhances the tensile strength and failure displacement,but also changes the brittle failure behavior into a more ductile quasi-brittle failure behavior.The suction measurements and mercury intrusion porosimetry(MIP)tests show that W-OH treatment can slightly reduce soil suction by affecting skeleton structure and increasing macropores.Combined with the microstructural analysis,it becomes evident that the significant improvement in soil tensile behavior through W-OH treatment is mainly attributed to the W-OH gel's ability to provide additional binding force for bridging and encapsulating the soil particles.Moreover,desiccation tests demonstrate that W-OH treatment can significantly reduce or even inhibit the formation of soil tensile cracking.With the increase of W-OH treatment concentration,the surface crack ratio and total crack length are significantly reduced.This study enhances a fundamental understanding of eco-polymer impacts on soil mechanical properties and provides valuable insight into their potential application for improving soil crack resistance.
基金supported by Shenzhen Municipal Science&Technology Innovation Committee(JCYJ20180504170040910)Urban Administration&Law Enforcement Bureau of Shenzhen Municipality(201802)。
文摘DEAR EDITOR,The macaques belongs to the genus Macaca,consisting of at least 23 species(Roos et al.,2019).Among all congeners,rhesus macaque(M.mulatta)is regarded as the widest distributed non-human primate species in the world.Its native range spans in East Asia,northern part of Southeast Asia and Indian subcontinent(Liu et al.,2018).Listed as“Least Concern”on the IUCN Red List,this species is locally threatened due to habitat loss and degradation in China and Thailand(Lu et al.,2018).Nevertheless,pet release resulting in hybridization with other congeners(e.g.,rhesus macaque×crab-eating macaque(M.fascicularis))was documented in Hong Kong SAR,China(Wong&Ni,2000),threatening genetic integrity of wild populations.
基金supported by the National Natural Science Foundation of China(No.52173292)the National Key Research and Development Project of China(No.2020YFC1910303)the Youth Innovation Promotion Association CAS(No.2018040).
文摘Non-degradable polymers cause serious environmental pollution problem,such as the widely-used while unrecyclable coatings which significantly affect the overall degradation performance of products.It is imperative and attractive to develop biodegradable functional coatings.Herein,we proposed a novel strategy to successfully prepare biodegradable,thermoplastic and hydrophobic coatings with high transparence and biosafety by weakening the interchain interactions between cellulose chain.The natural cellulose and cinnamic acid were as raw materials.Via reducing the degree of polymerization(DP)of cellulose and regulating the degree of substitution(DS)of cinnamate moiety,the obtained cellulose cinnamate(CC)exhibited not only the thermalflow behavior but also good biodegradability,which solves the conflict between the thermoplasticity and biodegradability in cellulose-based materials.The glass transition temperature(T_(g))and thermalflow temperature(T_(f))of the CC could be adjusted in a range of 150–200℃ and 180–210℃,respectively.The CC with DS<1.2 and DP≤100 degraded more than 60%after an enzyme treatment for 7 days,and degraded more than 80%after a composting treatment for 42 days.Furthermore,CC had no toxicity to human epidermal cells even at a high concentration(0.5 mg mL^(-1)).In addition,CC could be easily fabricated into multifunctional coating with high hydrophobicity,thermal adhesion and high transparence.Therefore,after combining with cellophane and paperboard,CC coating with low DP and DS could be used to prepare fully-biodegradable heat-sealing packaging,art paper,paper cups,paper straws and food packaging boxes.
基金National Natural Science Foundation of China (Grant No. 52103302, and No. 52070124)Shandong Provincial Natural Science Foundation (ZR2021QB182)+1 种基金Start-up Foundation for Senior Talents of Jiangsu University (21JDG041)China Postdoctoral Science Foundation (2023M731357)。
文摘Considerable research efforts have been dedicated to investigating the side reactions and the growth of Zn dendritic in aqueous zinc-ion batteries(AZIBs).The incorporation of organic solvents as additives in electrolytes has yielded highly promising results.Nevertheless,their pervasive use has been hindered by concerns regarding their toxicity,flammability,and economic viability.Herein,we propose the utilization of γ-valerolactone(γ-V),a novel eco-friendly solvent,as an alternative for conventional organic additives to improve the performance of Zn anode.Experimental investigations and theoretical analyses have verified that γ-V additives can diminish the Zn^(2+)-desolvation energy and enhance Zn^(2+) transport kinetics.The adsorbed γ-V molecules modulate the nucleation and diffusion of Zn^(2+),facilitating Zn growth along the(002) crystal plane,thus inhibiting dendrite formation and side reactions.Consequently,the modified electrolyte with 3% γ-V exhibit highly reversible cycling for 2800 h at1 mA cm^(-2) and 1 mA h cm^(-2) in Zn//Zn symmetric cell.The Zn//KVOH coin cells deliver a capacity retention of 74.7% after 1000 cycles at 5 A g^(-1).The Zn//KVOH pouch cells maintain a capacity retention of78.7% over 90 cycles at 3 A g^(-1).Notably,the γ-V additives also effectively alleviate the self-discharge phenomenon.This work provides valuable insights on the development of aqueous zinc-ion batteries with superior safety through the modulation of electrolytes using eco-friendly additives.
基金Under the auspices of National Key Research and Development Program of China (No.2022YFC3103103)。
文摘Changes in vegetation status generally also represents changes in the ecological health of islands and reefs(IRs).However,studies are limited of drivers and trends of vegetation change of Nansha Islands,China and how they relate to climate change and human activities.To resolve this limitation,we studied changes to the Normalized Difference Vegetation Index(NDVI)vegetation-greenness index for 22 IRs of Nansha Islands during normal and extreme conditions.Trends of vegetation greenness were analyzed using Sen's slope and Mann-Kendall test at two spatial scales(pixel and island),and driving factor analyses were performed by time-lagged partial correlation analyses.These were related to impacts from human activities and climatic factors under normal(temperature,precipitation,radiation,and Normalized Difference Built-up Index(NDBI))and extreme conditions(wind speed and latitude of IRs)from 2016 to 2022.Results showed:1)among the 22 IRs,NDVI increased/decreased significantly in 15/4 IRs,respectively.Huayang Reef had the highest NDVI change-rate(0.48%/mon),and Zhongye Island had the lowest(–0.29%/mon).Local spatial patterns were in one of two forms:dotted-form,and degradation in banded-form.2)Under normal conditions,human activities(characterized by NDBI)had higher impacts on vegetation-greenness than other factors.3)Under extreme conditions,wind speed(R^(2)=0.2337,P<0.05)and latitude(R^(2)=0.2769,P<0.05)provided limited explanation for changes from typhoon events.Our results provide scientific support for the sustainable development of Nansha Islands and the United Nations‘Ocean Decade’initiative.
基金National Natural Science Foundation of China(U21A6001,42075059)Specific Research Fund of The Innovation Platform for Academicians of Hainan Province(YSPTZX202143)+1 种基金Guangdong Major Project of Basic and Applied Basic Research(2020B0301030004)Science and Technology Project of Guangdong Meteorological Service(GRMC2020M29)。
文摘The South China Sea is a hotspot for regional climate research.Over the past 40 years,considerable improvement has been made in the development and utilization of the islands in the South China Sea,leading to a substantial change in the land-use of the islands.However,research on the impact of human development on the local climate of these islands is lacking.This study analyzed the characteristics of local climate changes on the islands in the South China Sea based on data from the Yongxing Island Observation Station and ERA5 re-analysis.Furthermore,the influence of urbanization on the local climate of the South China Sea islands was explored in this study.The findings revealed that the 10-year average temperature in Yongxing Island increased by approximately 1.11℃from 1961 to 2020,and the contribution of island development and urbanization to the local warming rate over 60 years was approximately 36.2%.The linear increasing trend of the annual hot days from 1961–2020 was approximately 14.84 days per decade.The diurnal temperature range exhibited an increasing trend of 0.05℃per decade,whereas the number of cold days decreased by 1.06days per decade.The rapid increase in construction on Yongxing Island from 2005 to 2021 led to a decrease in observed surface wind speed by 0.32 m s^(-1)per decade.Consequently,the number of days with strong winds decreased,whereas the number of days with weak winds increased.Additionally,relative humidity exhibited a rapid decline from 2001 to 2016 and then rebounded.The study also found substantial differences between the ERA5 re-analysis and observation data,particularly in wind speed and relative humidity,indicating that the use of re-analysis data for climate resource assessment and climate change evaluation on island areas may not be feasible.
文摘This study describes the gradient analysis of the freshwater macroinvertebrate assemblages in eight streams of Tenerife and La Gomera (Canary Islands) over a 16-year period. During this period, a total of 75 taxa belonging to 34 taxonomic families were found. Endemism has an important presence in the streams on both islands, especially regarding Trichoptera and Coleoptera. The overall status of freshwater macroinvertebrates is rather uncertain as recent data on these communities are scarce and focused on a limited number of sites. Overexploitation of aquifers and the diversion of natural water flows for irrigation have resulted in the drying up of numerous natural streams, inevitably endangering the fauna that inhabits them. A reduction in number and abundance of endemic and sensitive species was observed in the majority of the sampled streams resulting in a lower ecological rating. Therefore, it is proposed that the protection of streams of high conservation value is essential to conserve freshwater macroinvertebrate fauna native to the Canary Islands.
基金supported by the National Natural Science Foundation of China(Grant Nos.12074209 and 12274063)the Fundamental Research Funds for the Central Universities(Grant No.ZYGX2019J100)the Open Project of State Key Laboratory of Low-Dimensional Quantum Physics(Grant No.KF202008)。
文摘We investigate the nonlocal transport modulated by Coulomb interactions in devices comprising two interacting Majorana wires,where both nanowires are in proximity to a mesoscopic superconducting(SC)island.Each Majorana bound state(MBS)is coupled to one lead via a quantum dot with resonant levels.In this device,the nonlocal correlations can be induced in the absence of Majorana energy splitting.We find that the negative differential conductance and giant current noise cross correlation could be induced,due to the interplay between nonlocality of MBSs and dynamical Coulomb blockade effect.This feature may provide a signature for the existence of the MBSs.
基金The National Natural Science Foundation of China under contract Nos 42030502, 42090041 and 42166003the Guangxi Scientific Projects under contract Nos AD17129063 and AA17204074+1 种基金the Guangxi Youth Science Fund Project under contract 2019GXNSFBA185016the Ph.D. Research Start-up Foundation of Guangxi University under contract No. XBZ170339。
文摘As one of the micro-blocks dispersed in the South China Sea(SCS), the basement of the Xisha Islands has rarely been drilled because of the thick overlying Cenozoic sediments, which has led to a confused understanding of the pre-Cenozoic basement of the Xisha Islands. Well CK-1, a kilometer-scale major scientific drill in the Xisha Islands in the northwestern SCS, penetrated thick reefal limestone(0–888.4 m) and the underlying basement rocks(888.4–901.4 m). In this study, we present the zircon U-Pb ages of basement basaltic pyroclastic rocks from Well CK-1 in the Xisha Islands of the northwestern SCS to investigate the basement nature of the Xisha microblock. The basement of Well CK-1 consists of basaltic pyroclastic rocks on the seamount. The zircon grains yielded apparent ages ranging from ca. 2 138.9 Ma to ca. 36 Ma. The old group of zircon grains from Well CK-1 was considered to be inherited zircons. Two Cenozoic zircons gave a weighted mean 206Pb/238U age of(36.3 ± 1.1) Ma,Mean Squared Weighted Deviations(MSWD) = 1.2, which may represent the maximum age of the volcano eruption. The Yanshanian inherited zircons(116.9–105.7 Ma and 146.1–130.2 Ma) from Well CK-1 are consistent with the zircons from Well XK-1, indicating that the basement of Chenhang Island may be similar to that of Well XK-1. We propose that the Xisha micro-block may have developed on a uniform Late Jurassic metamorphic crystalline basement, intruded by Cretaceous granitic magma.
基金supported by the National Key R&D Program of China (Grant No.2019YFA0607202)the National Natural Science Foundation of China (Grant Nos. 42021004 and 42005143)+2 种基金support by the Postgraduate Research&Practice Innovation Program of Jiangsu Province (Grant No. KYCX21_0978)support by the Open Research Fund Program of the Key Laboratory of Urban Meteorology,China Meteorological Administration (Grant No. LUM-2023-12)the 333 Project of Jiangsu Province (Grant No. BRA2022023)
文摘Few studies have investigated the spatial patterns of the air temperature urban heat island(AUHI)and its controlling factors.In this study,the data generated by an urban climate model were used to investigate the spatial variations of the AUHI across China and the underlying climate and ecological drivers.A total of 355 urban clusters were used.We performed an attribution analysis of the AUHI to elucidate the mechanisms underlying its formation.The results show that the midday AUHI is negatively correlated with climate wetness(humid:0.34 K;semi-humid:0.50 K;semi-arid:0.73 K).The annual mean midnight AUHI does not show discernible spatial patterns,but is generally stronger than the midday AUHI.The urban–rural difference in convection efficiency is the largest contributor to the midday AUHI in the humid(0.32±0.09 K)and the semi-arid(0.36±0.11 K)climate zones.The release of anthropogenic heat from urban land is the dominant contributor to the midnight AUHI in all three climate zones.The rural vegetation density is the most important driver of the daytime and nighttime AUHI spatial variations.A spatial covariance analysis revealed that this vegetation influence is manifested mainly through its regulation of heat storage in rural land.
基金partially supported by the National Key R&D Program of China(No.2019YFE0300002)by National Natural Science Foundation of China(Nos.U1967206 and 12275071)。
文摘Ion temperature gradient(ITG)-driven turbulence with embedded static magnetic islands is simulated by utilizing a gyrokinetic theory-based global turbulence transport code(GKNET)in this work.Different from the traditional equilibrium circular magnetic-surface average(EMSA)method,an advanced algorithm that calculates the perturbed magnetic-surface average(PMSA)of the electric potential has been developed to precisely deal with the zonal flow component in a non-circular magnetic surface perturbed by magnetic islands.Simulations show that the electric potential vortex structure inside islands induced by the magnetic islands is usually of odd parity when using the EMSA method.It is found that the odd symmetry vortex can transfer into an even one after a steep zonal flow gradient,i.e.the flow shear has been built in the vicinity of the magnetic islands by adopting the PMSA algorithm.The phase of the potential vortex in the poloidal cross section is coupled with the zonal flow shear.Such an electric potential vortex mode may be of essential importance in wide topics,such as the turbulence spreading across magnetic islands,neoclassical tearing mode physics,and also the interaction dynamics between the micro-turbulence and MHD activities.
文摘Objective:To investigate the effect of Moringa oleifera leaf extract on semen quality parameters in Teressa goat buck.Methods:A total of 25 semen samples from six bucks were selected for the study.Spermatozoa of 150×10^(6) were incubated in 0,300,500 and 700μg of leaf extract as groupⅠ,Ⅱ,Ⅲ and Ⅳ,respectively.Liquid stored semen samples were analysed for motility,viability,total sperm abnormalities,plasma membrane,acrosomal and nuclear integrities,seminal plasma intracellular enzymes[aspartate aminotransferase(AST),alanine aminotransferase(ALT)and lactate dehydrogenase(LDH)]and total antioxidant capacity(TAC)and spermatozoa malondialdehyde(MDA)and cholesterol efflux in comparison with the control group(groupⅠ)for up to 72 h.Results:Moringa oleifera leaf extract(500μg/150×10^(6) spermatozoa)-treated semen had significantly higher motility,viability,plasma membrane,acrosomal and nuclear integrities,and TAC(P<0.05),and had significantly lower total sperm abnormalities,AST,ALT,LDH,MDA production and cholesterol efflux compared to those in other Moringa oleifera leaf extract treated(300 or 700μg/150×10^(6) spermatozoa)and control groups at different hours of liquid storage(P<0.05).Semen quality parameters and TAC showed an increasing trend and total sperm abnormalities,MDA production,leakage of intra-cellular enzymes and cholesterol efflux showed a decreasing trend from group Ⅰto group Ⅲand then an opposite trend from group Ⅲ to group Ⅳ at different hours of liquid storage.Conclusions:Moringa oleifera leaf extract 500μg/150×10^(6) spermatozoa can be used for liquid semen preservation in Teressa goat at Andaman and Nicobar Islands.
基金funded by the Equity Project Universitas Sumatera Utara(Number:10/UN5.2.3.1/PPM/KPEP/2023),which is entitled Pengembangan Papan Partikel Tahan Api Rendah Emisi Berbahan Limbah Tanaman Mangrove dan Limbah Tanaman Pertanian Melalui Penambahan Lignin Terfosforilasi Sebagai Filler.PT Greenei Alam Indonesia(PT GAI)contributed to providing the areca leaf sheath through the implementation of a collaboration agreement with the Research Center for Biomass and Bioproducts BRIN FY 2023-2025.
文摘Lignin,lignosulfonate,and synthesized phosphorylated lignosulfonate were introduced as greenfillers in citric acid-sucrose adhesives for bonding particleboard fabricated from areca leaf sheath(ALS).The characteristics of particleboards were compared to that of ultralow emitting formaldehyde(ULEF-UF).Thefillers derived from Eucalyptus spp.kraft-lignin were added forflame retardancy enhancement.10%of each lignin and modified lig-nin was added into the ULEF-UF and citric acid-sucrose bonded particleboards.Analyses applied to particle-boards included thermal characteristics,X-ray diffraction analysis(XRD),morphological properties,Fourier transform infrared spectroscopy(FTIR),as well as physical,mechanical,andfire resistance characteristics of the laboratory-fabricated particleboards.Lignin and modified lignin resulted in improved thermal stability of the composites bonded with ULEF-UF while the improvement in the particleboard bonded with citric acid-sucrose was not significant.The introduction offiller exerted a higher influence on the UF-bonded particleboards compared to composites fabricated with citric acid-sucrose.Generally,the presence of lignin,lignosulfonate,and phosphorylated lignosulfonate enhanced the mechanical strength of the ULEF-bonded particleboards,although their dimensional stability has deteriorated.Markedly,the use of lignin and lignosulfonate enhanced thefire resis-tance of the particleboards produced with lower observed weight loss.All laboratory particleboards exhibited satisfactoryfire resistance,attaining a V-0 rating in according to the UL-94 standard.
基金supported by the National Natural Science Foundation of China(NO.41901060).
文摘Mountain biodiversity is of great importance to biogeography and ecology.However,it is unclear what ecological and evolutionary processes best explain the generation and maintenance of its high levels of species diversity.In this study,we determined which of six common hypotheses(e.g.,climate hypotheses,habitat heterogeneity hypothesis and island biogeography theory)best explain global patterns of species diversity in Rhododendron.We found that Rhododendron diversity patterns were most strongly explained by proxies of island biogeography theory(i.e.,mountain area)and habitat heterogeneity(i.e.,elevation range).When we examined other relationships important to island biogeography theory,we found that the planimetric area and the volume of mountains were positively correlated with the Rhododendron diversity,whereas the‘mountains-to-mainland’distance was negatively correlated with Rhododendron diversity and shared species.Our findings demonstrate that Rhododendron diversity can be explained by island biogeography theory and habitat heterogeneity,and mountains can be regarded as islands which supported island biogeography theory.
文摘Neoproterozoic island arc assemblage of the Arabian–Nubian Shield(ANS)in the Eastern Desert(ED)of Egypt comprises juvenile suites of metavolcanics(MV),large amounts of meta-sedimentary rocks(MS),and voluminous metagabbros-diorites(MGD)and syn-tectonic intrusions of older granitoids(OG).We report here the updates of these four rock units in terms of classification,distribution,chemical characteristics,geodynamic evolution,metamorphism,and ages.In addition,we discuss these integrated data to elucidate a reasonable and reliable model for crustal evolution in the ANS.The main features of these rock units indicate their relation to each other and the geodynamic environment dominated by early immature oceanic island arcs to primitive continental arcs.Integrated information of the island arc metavolcanic and plutonic rocks(gabbros,diorites,tonalites,and granodiorites)furnish evidence of the genetic relationships.These include proximity and a coeval nature in the field;all protolith magmas are subalkaline in nature following calc-alkaline series with minor tholeiitic affinities;common geochemical signature of the arc rocks and subduction-related magmatism;their similar enrichment in LREEs;and similar major element compositions with mafic melts derived from metasomatized mantle wedge.The volcano-sedimentary and the OG rocks underwent multiphase deformation events whereas the MGD complexes deformed slightly.Based on the magmatic,sedimentological,and metamorphic evolutions constrained by geochronological data as well as the progressive evolutionary trend from extensional to compressional regimes,a possible gradual decrease in the subducted slab dip angle is the most infl uential in any geodynamic model for arc assemblage in the ED of Egypt.
基金Under the auspices of Special Funds for Education and Scientific Research of the Department of Finance(Min Cai Zhi[2022]No.840)Fujian Province Key Laboratory of Geographic Information Technology and Resource Optimization Construction Project(No.PTJH17014)。
文摘Although accelerated urbanization has led to economic prosperity,it has also resulted in urban heat island effects.Therefore,identifying methods of using limited urban spaces to alleviate heat islands has become an urgent issue.In this study,we assessed the spatiotemporal evolution of urban heat islands within the central urban area of Fuzhou City,China from 2010 to 2019.This assessment was based on a morphological spatial pattern analysis(MSPA)model and an urban thermal environment spatial network constructed us-ing the minimum cumulative resistance(MCR)model.Optimization measures for the spatial network were proposed to provide a theor-etical basis for alleviating urban heat islands.The results show that the heat island area within the study area gradually increased while that of urban cold island area gradually decreased.The core area was the largest of the urban heat island patch landscape elements with a significant impact on other landscape elements,and represented an important factor underlying urban heat island network stability.The thermal environment network revealed a total of 197 thermal environment corridors and 93 heat island sources.These locations were then optimized according to the current land use,which maximized the potential of 1599.83 ha.Optimization based on current land use led to an increase in climate resilience,with effective measures showing reduction in thermal environment spatial network structure and function,contributing to the mitigation of urban heat island.These findings support the use of current land use patterns during urban heat island mitigation measure planning,thus providing an important reference basis for alleviating urban heat island effects.
文摘Changdao Island,a hidden gem in east China’s Shandong Province,features breathtaking nature.As the sun cuddles the horizon,the island’s azure sky provides a flawless backdrop to an exquisite panorama.Jagged cliffs carved by centuries of endless waves stand guard along the shoreline,their rocky silhouettes seemingly frozen in time,summoning ancient majesty.Against this dramatic backdrop,flocks of seagulls take flight,their ivory wings catching the golden hues of the sun,creating an enchanting ballet in the sky.The air is filled with the gentle cries of these graceful birds,enhancing the island’s serenity.This harmonious blend of nature’s elements,from the sapphire sea to the towering cliffs and the mesmerizing flight of seagulls,makes Changdao Island an artistic masterpiece painted by the hand of mother nature herself.
基金The National Natural Science Foundation of China under contract Nos 41941010 and 42006184the Fundamental Research Funds for the Central Universities under contract No.2042022kf1068。
文摘In recent years,there has been a significant acceleration in the thinning,calving and retreat of the Pine Island Ice Shelf(PIIS).The basal channels,results of enhanced basal melting,have the potential to significantly impact the stability of the PIIS.In this study,we used a variety of remote sensing data,including Landsat,REMA DEM,ICESat-1 and ICESat-2 satellite altimetry observations,and Ice Bridge airborne measurements,to study the spatiotemporal changes in the basal channels from 2003 to 2020 and basal melt rate from 2010 to 2017 of the PIIS under the Eulerian framework.We found that the basal channels are highly developed in the PIIS,with a total length exceeding 450 km.Most of the basal channels are ocean-sourced or groundingline-sourced basal channels,caused by the rapid melting under the ice shelf or near the groundingline.A raised seabed prevented warm water intrusion into the eastern branch of the PIIS,resulting in a lower basal melt rate in that area.In contrast,a deepsea trough facilitates warm seawater into the mainstream and the western branch of the PIIS,resulting in a higher basal melt rate in the main-stream,and the surface elevation changes above the basal channels of the mainstream and western branch are more significant.The El Ni?o event in 2015–2016 possibly slowed down the basal melting of the PIIS by modulating wind field,surface sea temperature and depth seawater temperature.Ocean and atmospheric changes were driven by El Ni?o,which can further explain and confirm the changes in the basal melting of the PIIS.
文摘The fishing survey station located in the warm waters of the East China Sea is one of the abundant fishery resources of waters;with a large number of economic fish breeding grounds and economic juvenile feeding grounds. Several fish species according to this bottom trawl survey results which appear in the annual survey from winter to autumn give us a total of 58 species, which have appeared throughout the year. But the vast majority of species appears only in certain seasons, according to the sea fish survey and based on seasonal migratory species or species mainly small endemic species. The survey of fish is tropical and subtropical warm water species and warm temperate species, and the history of the area has several types of 397 different species. There are many reasons, in addition to recent years, human disturbance and adverse consequences of environmental changes brought about, but also with the relevant sampling methods and sampler time, the survey sampled only trawl based, from Ping yang Ocean and Fisheries Bureau, the waters are still other jobs method net, gill nets, fishing industry, etc. Survey results show that the type of fish in the summer (58 species) > spring (55 species) > winter (51 species) > autumn (42 species). The type of season was among spring to summer rose, summer to autumn decline. The survey found that in the reef area of the Nanji Islands, no one species of fish is the dominant species throughout the year (according to the dominant species, each species is dominant only in one season). From the dominant species turnover accounting for the four seasons, in winter it has 53.72% of the total biomass or annual biomass, spring it has 41.53% of the overall biomass, summer it has 31.85% and autumn it has 38.56% of total biomass. Visible, seasonal succession of dominant species of fish phenomenon is very obvious, especially in the spring and winter, summer transfers dominate species at this stage show the greatest change, but winter, the transfer of this dominant species changes in minimal. Seasonal changes from biomass and the average annual marine fish survey biomass were 4832.25 g/h. From different seasons, the average biomass in winter (10779.88 g/h) > of the average biomass in spring (3624.1 g/hour) > of the mean biomass in autumn (3158 g/h) > the average Biomass in summer (1767 g/h). All of them show significant seasonal variation of the biomass, in winter and spring, the biomass is generally not high, but significantly higher than in the summer and autumn seasons. Each season, around the coast of southern Zhejiang, is less than the biomass and other catches off, which involves investigating sea location, size range, and the survey ship different network related tools. Another change from the area of biomass, some studies found that the survey of four-season fish of waters above the biological capacity of several kilograms only in some stations, namely stations and the highest biomass in summer appeared in stations 3, 7 and 11. In autumn the highest biomass appeared in stations 3, 6, 20 and 23.
基金This paper is supported by the National Natural Science Foundation of China(Grant No.31400318)the Fujian Provincial Department of Science and Technology Guided Projects(Grant No.2020Y0089)the STS Project of Fujian Science and Technology Department(Grant Nos.2021T3014,2022T3023).
文摘Taking the pilgrimage,tourism and cultural island of Meizhou Island as an example,the evaluation index system of the coupling and coordinated development of“Mazu culture,socio-economy,eco-environment”(MSE)compound system was constructed.The index weights were determined by AHP-entropy method,and the coupling degree,coordinated degree,comprehensive evaluation index and grey correlation degree of MSE system of Mazu Island from 2012 to 2022 were measure.The results showed that:(1)the comprehensive evaluation indexes of the three subsystems was on the rise in general,but the evaluation index of the ecological subsystems increased relatively slowly.(2)The coupling degree was only in the running-in stage in 2012,and the other years were in the coordinated coupling stage.(3)The coupling coordination degree increased from 0.35 in 2012 to 0.82 in 2022,the coupling coordination level was changed from mild imbalance to good coordination.(4)Through the comparison of grey correlation degree,the 24 indexes in the evaluation index system had great influence on the coupling coordination degree of MSE system.The coupling coordination degree was closely related to the development of socio-economy and the spread of Mazu culture.With the rapid development of tourism brought about by the spread of Mazu culture,the pressure on the ecological environment will be increasing.Compared with the rapid growth of tourism and economy,it is equally important to strengthen environmental protection and pay attention to the quality of ecological environment development.