期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The responses of carbon-and nitrogen-acquiring enzymes to nitrogen and phosphorus additions in two plantations in southern China 被引量:2
1
作者 Senhao Wang Taiki Mori +1 位作者 Jiangming Mo Wei Zhang 《Journal of Forestry Research》 SCIE CAS CSCD 2020年第4期1319-1324,共6页
In tropical plantations,nutrients such as nitrogen(N)or phosphorus(P)are often applied as management practices.However,the effects of such nutrient additions on topsoil C-and N-acquiring enzymes activities are unclear... In tropical plantations,nutrients such as nitrogen(N)or phosphorus(P)are often applied as management practices.However,the effects of such nutrient additions on topsoil C-and N-acquiring enzymes activities are unclear.In this study,the impacts of fertilization onβ-1,4-glucosidase(BG),β-D-cellobiosidase(CBH),β-1,4-xylosidase(BX),β-1,4-N-acetyl-glucosaminidase(NAG),and leucine amino peptidase(LAP)enzymes activities from topsoil and litter layer of two tropical plantations(Acacia auriculiformis and Eucalyptus urophylla)were measured.The results showed that N addition had neutral impact on topsoil enzymes,while significantly elevating the activities of BG,CBH,BX,and NAG in the litter layer.P fertilization had no impacts except for an elevation of NAG in litter sample.There was no interactions found between N and P additions on these enzyme activities.The clearer impacts of N over P fertilization were unexpected because that the study site receives a high rate of atmospheric N deposition,and has low soil P availability.The impact of P fertilization on hydrolytic enzyme activities may be less important compared with that of N. 展开更多
关键词 Tropical tree plantation ecoenzymes FERTILIZATION Forest management
下载PDF
Soil and microbial C:N:P stoichiometries play vital roles in regulating P transformation in agricultural ecosystems:A review
2
作者 Guanglei CHEN Jiahui YUAN +4 位作者 Shenqiang WANG Yuting LIANG Dengjun WANG Yiyong ZHU Yu WANG 《Pedosphere》 SCIE CAS CSCD 2024年第1期44-51,共8页
Stoichiometry plays a crucial role in biogeochemical cycles and can modulate soil nutrient availability and functions. In agricultural ecosystems,phosphorus(P) fertilizers(organic or chemical) are often applied to ach... Stoichiometry plays a crucial role in biogeochemical cycles and can modulate soil nutrient availability and functions. In agricultural ecosystems,phosphorus(P) fertilizers(organic or chemical) are often applied to achieve high crop yields. However, P is readily fixed by soil particles, leading to low P use efficiency. Therefore, understanding the role of carbon:nitrogen:P stoichiometries of soil and microorganisms in soil P transformation is of great significance for P management in agriculture. This paper provides a comprehensive review of the recent research on stoichiometry effect on soil P transformation in agricultural ecosystems. Soil microorganisms play an important role in the transformation of soil non-labile inorganic P to microbial biomass P by regulating microbial biomass stoichiometry. They also mobilize soil unavailable organic P into available P by changing ecoenzyme stoichiometry. Organic materials, such as manure and straw, play an important role in promoting the transformation of insoluble P into available P as well. Additionally, periphytic biofilms can reduce P loss from rice field ecosystems. Agricultural stoichiometries are different from those of natural ecosystems and thereby should receive more attention due to the influences of anthropogenic factors. Therefore, it is necessary to conduct further stoichiometry research on the soil biochemical mechanisms underlying P transformation in agricultural ecosystems. In conclusion, understanding stoichiometry impact on soil P transformation is crucial for P management in agricultural ecosystems. 展开更多
关键词 ecoenzyme microbial biomass microbial community MICROORGANISM P availability periphytic biofilm soil P transformation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部