Intelligent equipment is a kind of device that is characterized by intelligent sensor interconnections, big data processing, new types of displays, human-machine interaction and so on for the new generation of informa...Intelligent equipment is a kind of device that is characterized by intelligent sensor interconnections, big data processing, new types of displays, human-machine interaction and so on for the new generation of information technology. For this purpose, in this paper, first, we present a type of novel intelligent deep hybrid neural network algorithm based on a deep bidirectional recurrent neural network integrated with a deep backward propagation neural network. It has realized acoustic analysis, speech recognition and natural language understanding for jointly constituting human-machine voice interactions. Second, we design a voice control motherboard using an embedded chip from the ARM series as the core, and the onboard components include ZigBee, RFID, WIFI, GPRS, a RS232 serial port, USB interfaces and so on. Third, we take advantage of algorithms, software and hardware to make machines “understand” human speech and “think” and “comprehend” human intentions to structure critical components for intelligent vehicles, intelligent offices, intelligent service robots, intelligent industries and so on, which furthers the structure of the intelligent ecology of the Internet of Things. At last, the experimental results denote that the study of the semantics interaction controls based on an embedding has a very good effect, fast speed and high accuracy, consequently realizing the intelligent ecology construction of the Internet of Things.展开更多
面向差异化业务需求,电力物联网(Electric Internet of Things,EIoT)需要设计与之适配的数据处理架构,该架构将引入数据缓存、边缘处理等功能,并且涵盖EIoT中数据的清洗、过滤和融合等关键步骤。此外,在该架构基础上,需要同时满足大规...面向差异化业务需求,电力物联网(Electric Internet of Things,EIoT)需要设计与之适配的数据处理架构,该架构将引入数据缓存、边缘处理等功能,并且涵盖EIoT中数据的清洗、过滤和融合等关键步骤。此外,在该架构基础上,需要同时满足大规模数据传输需求,尤其是将电力终端的能源效率(Energy Efficiency,EE)作为保障测量、监控、控制等多个电力运行环节超可靠低延迟通信(Ultra-Reliable and Low-Latency Communication,URLLC)的重要依据。在URLLC中,功率分配被认为是提高能效与数据处理效率的有效方法。然而,由于URLLC的特殊要求,传统香农公式在其中并不适用。因此,需要使用有限块长度编码理论来确保超可靠和低延迟的通信。文中解决了EIoT中URLLC的能效优化问题,并引入自适应深度神经网络,该技术可以根据不同电力设备接入数量,动态优化深度神经网络参数。深度神经网络将要优化的功率分配函数参数化,以无监督的方式离线训练,并可以在线部署以实现实时的功率分配结果。最后,仿真结果表明了所提方法在数据处理效率方面的有效性。展开更多
随着电力物联网(electric Internet of Things,eIoT)技术的快速发展,海量电力设备在网络边缘环境中产生了丰富的数据。移动边缘计算(Mobile Edge Computing,MEC)技术在靠近终端设备的位置部署边缘代理可以有效减少数据处理延迟,这使其...随着电力物联网(electric Internet of Things,eIoT)技术的快速发展,海量电力设备在网络边缘环境中产生了丰富的数据。移动边缘计算(Mobile Edge Computing,MEC)技术在靠近终端设备的位置部署边缘代理可以有效减少数据处理延迟,这使其非常适用于延迟敏感的电力物联网场景。然而,目前的大多数研究没有考虑到部分边缘终端设备也可以作为代理设备提供计算服务,造成了资源浪费。为了充分利用移动边缘计算过程中边缘代理以及边缘终端设备的计算能力,提出了一种基于设备聚类的任务卸载方案。首先,基于分层DBSCAN(hierarchical density-based spatial clustering of applications with noise)算法,对系统中的静态和动态边缘设备进行聚类。其次,将任务卸载问题建模为多臂老虎机(Multi-Armed Bandits,MAB)模型,目标为最小化卸载延迟。再次,提出了一种基于自适应置信上限算法的算法来寻找簇内与簇间的卸载策略。最后,仿真结果表明,该方案在平均延迟方面表现出了更好的性能,并且设备簇的存活时间延长了10%~20%。展开更多
文摘Intelligent equipment is a kind of device that is characterized by intelligent sensor interconnections, big data processing, new types of displays, human-machine interaction and so on for the new generation of information technology. For this purpose, in this paper, first, we present a type of novel intelligent deep hybrid neural network algorithm based on a deep bidirectional recurrent neural network integrated with a deep backward propagation neural network. It has realized acoustic analysis, speech recognition and natural language understanding for jointly constituting human-machine voice interactions. Second, we design a voice control motherboard using an embedded chip from the ARM series as the core, and the onboard components include ZigBee, RFID, WIFI, GPRS, a RS232 serial port, USB interfaces and so on. Third, we take advantage of algorithms, software and hardware to make machines “understand” human speech and “think” and “comprehend” human intentions to structure critical components for intelligent vehicles, intelligent offices, intelligent service robots, intelligent industries and so on, which furthers the structure of the intelligent ecology of the Internet of Things. At last, the experimental results denote that the study of the semantics interaction controls based on an embedding has a very good effect, fast speed and high accuracy, consequently realizing the intelligent ecology construction of the Internet of Things.
文摘面向差异化业务需求,电力物联网(Electric Internet of Things,EIoT)需要设计与之适配的数据处理架构,该架构将引入数据缓存、边缘处理等功能,并且涵盖EIoT中数据的清洗、过滤和融合等关键步骤。此外,在该架构基础上,需要同时满足大规模数据传输需求,尤其是将电力终端的能源效率(Energy Efficiency,EE)作为保障测量、监控、控制等多个电力运行环节超可靠低延迟通信(Ultra-Reliable and Low-Latency Communication,URLLC)的重要依据。在URLLC中,功率分配被认为是提高能效与数据处理效率的有效方法。然而,由于URLLC的特殊要求,传统香农公式在其中并不适用。因此,需要使用有限块长度编码理论来确保超可靠和低延迟的通信。文中解决了EIoT中URLLC的能效优化问题,并引入自适应深度神经网络,该技术可以根据不同电力设备接入数量,动态优化深度神经网络参数。深度神经网络将要优化的功率分配函数参数化,以无监督的方式离线训练,并可以在线部署以实现实时的功率分配结果。最后,仿真结果表明了所提方法在数据处理效率方面的有效性。
文摘随着电力物联网(electric Internet of Things,eIoT)技术的快速发展,海量电力设备在网络边缘环境中产生了丰富的数据。移动边缘计算(Mobile Edge Computing,MEC)技术在靠近终端设备的位置部署边缘代理可以有效减少数据处理延迟,这使其非常适用于延迟敏感的电力物联网场景。然而,目前的大多数研究没有考虑到部分边缘终端设备也可以作为代理设备提供计算服务,造成了资源浪费。为了充分利用移动边缘计算过程中边缘代理以及边缘终端设备的计算能力,提出了一种基于设备聚类的任务卸载方案。首先,基于分层DBSCAN(hierarchical density-based spatial clustering of applications with noise)算法,对系统中的静态和动态边缘设备进行聚类。其次,将任务卸载问题建模为多臂老虎机(Multi-Armed Bandits,MAB)模型,目标为最小化卸载延迟。再次,提出了一种基于自适应置信上限算法的算法来寻找簇内与簇间的卸载策略。最后,仿真结果表明,该方案在平均延迟方面表现出了更好的性能,并且设备簇的存活时间延长了10%~20%。