Based on multi-type,multi-temporal remote sensing data,we have monitored recent changes in cultivated land use and vegetation,in sandy areas and salinized desertification in the Green Corridor zone of the main channel...Based on multi-type,multi-temporal remote sensing data,we have monitored recent changes in cultivated land use and vegetation,in sandy areas and salinized desertification in the Green Corridor zone of the main channel of the Tarim River Basin.The results of our investigation show that the ecological environment in the Green Corridor of the main channel of the Tarim River Basin has conspicuously improved from 2002 to 2004.These improvements show up largely in such aspects as an increase in the rate of vegetation cover,a reduction in desertification land areas and a weakening in the intensity of sandy and the salinized land.On the other hand,the cultivated area in the Tarim River Basin significantly increased from 2002 to 2004.The rate of growth in cultivated areas during this period was significantly higher than that from 1999 to 2002.The increase in the use of irrigation resulting from the substantial increase in cultivated areas has a long-term potential restraining effect on the restoration of ecological functions of the Tarim River.展开更多
Mining activities may cause serious damages to the river ecological environment in mining areas. It has been realized that challenging is faced for optimal decision-making on the river ecological restoration resulting...Mining activities may cause serious damages to the river ecological environment in mining areas. It has been realized that challenging is faced for optimal decision-making on the river ecological restoration resulting from system complexity, multi-objectives, long term restoration in which multiple stages may be needed to take, and difficulty in detailed process quan- tification. By analyzing and fully reflecting the differences between the central zone and surrounding zones of the restored river passing through the mining area, the comprehensive evaluation index systems of the central zone and surrounding zones are separately suggested firstly. Then a scenario-based optimization decision-making model for river ecological restoration in min- ing areas was established with taking advantages of spatial divisions and following procedure of first going through optimiza- tion by sub-region level, then optimizing by integration. Then, a framework for scenario-based optimal decision-making on water-deficient river ecological restoration in mining areas is proposed in which a multi-objective and multi-stage spatial division optimization method is considered to improve decision-making efficiency and enhance its practicability. It is indicated that this optimization framework is reasonable and practical, which is expected to offer reliable decision support in identifying the effective solutions on optimal management of the water-deficient river ecological restoration in mining areas. At the same time, it has implications in general land reclamation and ecological restoration in the mining areas.展开更多
Based on the generalized landscape perspective, regional connotation of urban river landscape is expanded. The area connotation of urban river landscape is expanded based on the generalized landscape perspective. In a...Based on the generalized landscape perspective, regional connotation of urban river landscape is expanded. The area connotation of urban river landscape is expanded based on the generalized landscape perspective. In addition to natural and functional attributes, river landscape should be regarded as a regional space element based on heterogeneous space scale. First, as for research method system, the space research models(including ecological footprint, space planning, and landscape pattern index, etc.) coupled with different angle scales and interdisciplinary theory, are utilized to study different correlations and results formed by urban river landscape elements and other regional space elements from the perspective of the regional ecological space, and the overall development goal of the urban river landscape pattern based on the goals of the regional ecological space planning is obtained. Second, the oriented urban river landscape planning and the "M" type close-tonature design strategy are evaluated through the city function zoning orientation and micro-scale urban river landscape pattern index. The research realizes the compatibility of overall goals in terms of the regional ecology, the development of urban functional areas, and the river landscape planning, without losing micro difference and maneuverability based on the urban river landscape planning and design oriented strategy, which innovates the new approach of urban river landscape planning and design with sustainable and balanced development of regional resources, multi-scale, and multiple objectives.展开更多
This paper aims to explore the pH,COD,ammonia nitrogen,total nitrogen,total phosphorus and other indices regarding Xinli River water in Binzhou City.The results show that the pH of the water quality index is between 7...This paper aims to explore the pH,COD,ammonia nitrogen,total nitrogen,total phosphorus and other indices regarding Xinli River water in Binzhou City.The results show that the pH of the water quality index is between 7.3 and 7.8,slightly alkaline;the COD content of Xinli River is about 140-163 mg/L,and the COD pollution is serious in some water sections;the ammonia nitrogen content of Xinli River is 0.2-2.17 mg/L,the total nitrogen content is about 0.799-1.3 mg/L,the total phosphorus content is about 0.54-0.92 mg/L,suggesting that the water eutrophication is very serious.Due to the large amount of domestic sewage discharged into Xinli River without treatment,slow circulation of river water and other factors,the eutrophication is serious in the urban watercourse.展开更多
The community characteristics of macrobenthos in the Huanghe(Yellow River) Estuary is influenced by a combination of natural and anthropogenic factors. Here, we investigated short-term changes(1-month) in macroben...The community characteristics of macrobenthos in the Huanghe(Yellow River) Estuary is influenced by a combination of natural and anthropogenic factors. Here, we investigated short-term changes(1-month) in macrobenthic community structure in response to water and sediment discharge regulation(WSDR) in 2011.Specifically, we sampled the macrobenthos at 18 sampling stations situated at four distances(5, 10, 20, and 40 km)from the mouth of the Huanghe Estuary before(mid-June), during(early-July), and after(mid-July) WSDR. The results showed that a total of 73, 72, and 85 species were collected before, during, and after WSDR, respectively.Then, 13, 1, and 16 dominant species were detected at this three periods. Four phyla were primarily detected at all three periods(Annelida, Mollusca, Arthropoda, and Echinodermata). However, while Mollusca and Annelida were the most important phyla in our study, Echinodermata and Annelida were the most important phyla in 1982,demonstrating major changes to community structure over a 3-decadal period. All stations were of high quality BOPA index before WSDR, whereas two and three stations were of reduced quality BOPA index during and after WSDR, respectively. The results of ABC curves showed that had incurred disturbed conditions after human activities WSDR. Most important of all, multivariate analyses and RDA analysis indicated that the structure of the macrobenthic community was closely linked to environment factors, including that organic content factor caused the distribution of macrobenthic community mostly during WSDR, while water depth after WSDR affected the macro benthos community structure seriously, and during WSDR, the environment factor influencing it was not single, including organic content, sulfide content, Hg and As. These differences may have been due to changes in water transparency negatively impacting the growth and development of macrobenthos, due to specific lifehistory requirements. Our results demonstrate that anthropogenic activity is having both long-term(3 decadal)and short term(1-month) impacts on the structure of the macrobenthic community of the Huanghe Estuary. In conclusion, human activities WSDR influence the habitat environment of macro benthos, including the water temperature, nutrients, bioturbation, and so on. Therefore, we suggest the necessity to strengthen regulations of land-derived organic pollutant input to maintain the ecological balance of the Huanghe Estuary.展开更多
The 20<sup>th</sup> National Congress of the Communist Party of China proposed to promote the improvement of urban and rural living environment and build livable and workable villages and beautiful village...The 20<sup>th</sup> National Congress of the Communist Party of China proposed to promote the improvement of urban and rural living environment and build livable and workable villages and beautiful villages. The development and challenges of rural domestic sewage treatment coexist. Based on the field investigation of 15 administrative villages in 3 districts and counties of Dongying City, there is a big gap between the development status of rural domestic sewage treatment and expectations. Investigate rural domestic sewage treatment cases in-depth, and condense four modes of primitive, developmental, mature and advanced in a variety of different rural domestic sewage treatment models for discussion, among which, the village sewage treatment work under the mature mode has achieved remarkable results, and is at the forefront of the current rural domestic sewage treatment. Through the multi-case analysis method, the practical dilemma of sewage treatment in different models of villages is summarized, and the feasible improvement path is explored, which contributes to the ecological protection and high-quality development of Dongying and the Yellow River Basin.展开更多
The aquatic environments of the Pearl River Delta in Southern China are subjected to contamination with various industrial chemicals from local industries. In this paper, the occurrence, seasonal variation and spatial...The aquatic environments of the Pearl River Delta in Southern China are subjected to contamination with various industrial chemicals from local industries. In this paper, the occurrence, seasonal variation and spatial distribution of alkylphenol octylphenol (OP) and nonylphenol (NP) in fiver surface water and sediments in the runoff outlets of the Pearl River Delta were investigated. NP and OP were detected in all water and sediment samples and their mean concentrations in surface water during the dry season ranged from 810 to 3366 ng/L and 85.5 to 581 ng/L, respectively, and those in sediments ranged from 14.2 to 95.2 ng/g dw and 0.4 to 3.0 ng/g dw, respectively. In surface water, much higher concentrations were detected in the dry season than those in the wet season. In sediments, the concentrations in the dry season were also mostly higher. High concentrations of NP and OP were found in Humen outlet, likely due to high levels of domestic and industrial wastewater discharges. An ecological risk assessment with the use of hazard quotient (HQ) was also carried out and the HQvalues ranged from 3.6 × 10^-5 to 35 and 64% of samples gave a HQ 〉 1, indicating that the current levels of NP and OP pose a significant risk to the relevant aquatic organisms in the region.展开更多
The river ecosystem in the Hai River Basin(HRB), an important economic region in China, is seriously degraded. With the aim of river restoration in the HRB, we developed a method to assess the river's ecological st...The river ecosystem in the Hai River Basin(HRB), an important economic region in China, is seriously degraded. With the aim of river restoration in the HRB, we developed a method to assess the river's ecological status and conducted a preliminary application of the method.The established method was a predictive model, which used macroinvertebrates as indicator organisms. The river's ecological status was determined by calculating the ratio of observed to expected values(O/E). The method included ecoregionalization according to natural factors, and the selection of reference sites based on combinations of habitat quality and macroinvertebrate community. Macroinvertebrate taxa included Insecta,Crustacea, Gastropoda, and Oligochaeta, with 39 families and 95 genera identified in the HRB. The HRB communities were dominated by pollution tolerant taxa, such as Lymnaeidae, Chironomus, Limnodrilus, Glyptotendipes, and Tubifex. The average Shannon–Wiener index was 1.40 ± 0.5, indicating a low biodiversity. In the river length of 3.31 × 10^4 km, 55% of the sites were designated poor, with a bad ecological status. Among nine secondary river systems, Luan and Zi-ya had the best and worst river conditions,respectively. Only 17 reference site groups were selected for river management in the 41 ecoregions examined. This study lays the foundation for river restoration and related research in the HRB, and we anticipate further developments of this novel method.展开更多
Recent rapid industrialization and urbanization in the Pearl River Delta (PRD) is character-ized by broad geographical dispersion, diversities of scales and technological levels, and the proliferation of small-scale t...Recent rapid industrialization and urbanization in the Pearl River Delta (PRD) is character-ized by broad geographical dispersion, diversities of scales and technological levels, and the proliferation of small-scale township and individual enterprises. Such a pattern of fast development has brought widespread environmental perturbation that is becoming difficult to contain or control. This study surveys the present environmental status in urban areas of PRD, assesses the trends of environmental quality, and evaluates the ecological impacts of development in the region.展开更多
Large wood in rivers can lead to accumulations in the river channel, affecting local flow structures, aquatic habitats, and the river’s topography. This plays a crucial role in the ecological restoration of the river...Large wood in rivers can lead to accumulations in the river channel, affecting local flow structures, aquatic habitats, and the river’s topography. This plays a crucial role in the ecological restoration of the river. This paper presents flow field measurements downstream of six types of logjams at different flow velocities using acoustic Doppler velocimetry (ADV) for artificially designed engineered logjams. The results indicate that the presence of logjams reduces the flow velocity and increases the turbulent kinetic energy in the wake region, and as the distance downstream increases, the flow velocity and turbulence intensity in the wake region gradually return to the upstream level. The minimum values of normalized flow velocity under different conditions are located in the region of the bottommost logs. The differences in normalized flow velocity at various flow rates are not significant. Jets are less likely to be generated in logjams with larger and more concentrated projection areas, but the strength of the jet is influenced by the physical structure of the logjam (projection area, gap ratio). The flow distribution behind the logjam is primarily influenced by the proportion of the projected area in different regions. Changes in the vertical physical structure of the logjam have minimal effect on the lateral flow distribution. Flow velocity in the gap area (b0) at the bottom of different logjams is influenced by their physical structure. The larger the overall blockage area of the logjams, the larger the flow velocity in the bottom gap area will be. The flow velocity in the bottom gap area of a densely placed logjam is mainly influenced by the gap ratio. The velocity of flow in the gap area can impact the initiation and deposition of sediment near the logjam. However, the internal structure complexity of the logjam does not significantly affect river energy dissipation and flow attenuation. This study broadens the applicability of certain theoretical models and explores the impact of logjams on river ecology and channel geomorphology. The findings can serve as a theoretical foundation for ecological restoration, timber management, and logjam construction in rivers.展开更多
The destruction of the ecological system caused by urban expansion has led to the environmental deterioration,cities have become increasingly vulnerable.In this study,six districts and counties along the Yellow River ...The destruction of the ecological system caused by urban expansion has led to the environmental deterioration,cities have become increasingly vulnerable.In this study,six districts and counties along the Yellow River in Zhengzhou were selected as the study area.First,green infrastructure elements were extracted by morphological spatial pattern analysis.Then,outside the urban areas,we used connectivity analysis to evaluate the importance of core areas,adopted minimum cumulative resistance model to extract potential corridors,and identified the important corridors by using the gravity model.Finally,in the urban areas,we set up an evaluation system to assess the demands for ecosystem services.The results showed that:(1)Seven landscape types of green infrastructure be identified in study area.(2)There are 17 vital cores,136 potential corridors,and 24 vital corridors outside the urban areas.(3)The blocks with high demand for ecosystem services are mostly concentrated in the old blocks with dense populations and poor infrastructure,and there are 5 blocks with comprehensive high-demand.Based on identified importance for green infrastructure land space,and high-demand level for ecosystem services areas in this study,a green infrastructure net plan was proposed based on spatial conservation prioritisation.展开更多
基金Financial support for this work was provided by the National Natural Science Foundation of China (No. 41040011)the Fun-damental Research Funds for the Central Universities (No.CHD2010JC103)
文摘Based on multi-type,multi-temporal remote sensing data,we have monitored recent changes in cultivated land use and vegetation,in sandy areas and salinized desertification in the Green Corridor zone of the main channel of the Tarim River Basin.The results of our investigation show that the ecological environment in the Green Corridor of the main channel of the Tarim River Basin has conspicuously improved from 2002 to 2004.These improvements show up largely in such aspects as an increase in the rate of vegetation cover,a reduction in desertification land areas and a weakening in the intensity of sandy and the salinized land.On the other hand,the cultivated area in the Tarim River Basin significantly increased from 2002 to 2004.The rate of growth in cultivated areas during this period was significantly higher than that from 1999 to 2002.The increase in the use of irrigation resulting from the substantial increase in cultivated areas has a long-term potential restraining effect on the restoration of ecological functions of the Tarim River.
文摘Mining activities may cause serious damages to the river ecological environment in mining areas. It has been realized that challenging is faced for optimal decision-making on the river ecological restoration resulting from system complexity, multi-objectives, long term restoration in which multiple stages may be needed to take, and difficulty in detailed process quan- tification. By analyzing and fully reflecting the differences between the central zone and surrounding zones of the restored river passing through the mining area, the comprehensive evaluation index systems of the central zone and surrounding zones are separately suggested firstly. Then a scenario-based optimization decision-making model for river ecological restoration in min- ing areas was established with taking advantages of spatial divisions and following procedure of first going through optimiza- tion by sub-region level, then optimizing by integration. Then, a framework for scenario-based optimal decision-making on water-deficient river ecological restoration in mining areas is proposed in which a multi-objective and multi-stage spatial division optimization method is considered to improve decision-making efficiency and enhance its practicability. It is indicated that this optimization framework is reasonable and practical, which is expected to offer reliable decision support in identifying the effective solutions on optimal management of the water-deficient river ecological restoration in mining areas. At the same time, it has implications in general land reclamation and ecological restoration in the mining areas.
基金Sponsored by National Natural Science Foundation of China(NSFC)(51208428)Applied Basic Research Program of Sichuan Province(2013JY0038)+1 种基金Sichuan Research Center for Landscape and Recreation Research Project(JGYQ201419)Central University Fundamental Research Funds for Science and Technology Innovation Project(SWJTU11CX158)
文摘Based on the generalized landscape perspective, regional connotation of urban river landscape is expanded. The area connotation of urban river landscape is expanded based on the generalized landscape perspective. In addition to natural and functional attributes, river landscape should be regarded as a regional space element based on heterogeneous space scale. First, as for research method system, the space research models(including ecological footprint, space planning, and landscape pattern index, etc.) coupled with different angle scales and interdisciplinary theory, are utilized to study different correlations and results formed by urban river landscape elements and other regional space elements from the perspective of the regional ecological space, and the overall development goal of the urban river landscape pattern based on the goals of the regional ecological space planning is obtained. Second, the oriented urban river landscape planning and the "M" type close-tonature design strategy are evaluated through the city function zoning orientation and micro-scale urban river landscape pattern index. The research realizes the compatibility of overall goals in terms of the regional ecology, the development of urban functional areas, and the river landscape planning, without losing micro difference and maneuverability based on the urban river landscape planning and design oriented strategy, which innovates the new approach of urban river landscape planning and design with sustainable and balanced development of regional resources, multi-scale, and multiple objectives.
基金Supported by Research Fund of Binzhou University in 2017(BZXYG1712)Shandong Provincial Soft Science Research Program(2017RKB01166)
文摘This paper aims to explore the pH,COD,ammonia nitrogen,total nitrogen,total phosphorus and other indices regarding Xinli River water in Binzhou City.The results show that the pH of the water quality index is between 7.3 and 7.8,slightly alkaline;the COD content of Xinli River is about 140-163 mg/L,and the COD pollution is serious in some water sections;the ammonia nitrogen content of Xinli River is 0.2-2.17 mg/L,the total nitrogen content is about 0.799-1.3 mg/L,the total phosphorus content is about 0.54-0.92 mg/L,suggesting that the water eutrophication is very serious.Due to the large amount of domestic sewage discharged into Xinli River without treatment,slow circulation of river water and other factors,the eutrophication is serious in the urban watercourse.
基金The Public Science and Technology Research Funds Projects of Ocean under contract No.200905019the Taishan Scholars Station of Aquatic Animal Nutrition and Feed under contract No.HYK201004
文摘The community characteristics of macrobenthos in the Huanghe(Yellow River) Estuary is influenced by a combination of natural and anthropogenic factors. Here, we investigated short-term changes(1-month) in macrobenthic community structure in response to water and sediment discharge regulation(WSDR) in 2011.Specifically, we sampled the macrobenthos at 18 sampling stations situated at four distances(5, 10, 20, and 40 km)from the mouth of the Huanghe Estuary before(mid-June), during(early-July), and after(mid-July) WSDR. The results showed that a total of 73, 72, and 85 species were collected before, during, and after WSDR, respectively.Then, 13, 1, and 16 dominant species were detected at this three periods. Four phyla were primarily detected at all three periods(Annelida, Mollusca, Arthropoda, and Echinodermata). However, while Mollusca and Annelida were the most important phyla in our study, Echinodermata and Annelida were the most important phyla in 1982,demonstrating major changes to community structure over a 3-decadal period. All stations were of high quality BOPA index before WSDR, whereas two and three stations were of reduced quality BOPA index during and after WSDR, respectively. The results of ABC curves showed that had incurred disturbed conditions after human activities WSDR. Most important of all, multivariate analyses and RDA analysis indicated that the structure of the macrobenthic community was closely linked to environment factors, including that organic content factor caused the distribution of macrobenthic community mostly during WSDR, while water depth after WSDR affected the macro benthos community structure seriously, and during WSDR, the environment factor influencing it was not single, including organic content, sulfide content, Hg and As. These differences may have been due to changes in water transparency negatively impacting the growth and development of macrobenthos, due to specific lifehistory requirements. Our results demonstrate that anthropogenic activity is having both long-term(3 decadal)and short term(1-month) impacts on the structure of the macrobenthic community of the Huanghe Estuary. In conclusion, human activities WSDR influence the habitat environment of macro benthos, including the water temperature, nutrients, bioturbation, and so on. Therefore, we suggest the necessity to strengthen regulations of land-derived organic pollutant input to maintain the ecological balance of the Huanghe Estuary.
文摘The 20<sup>th</sup> National Congress of the Communist Party of China proposed to promote the improvement of urban and rural living environment and build livable and workable villages and beautiful villages. The development and challenges of rural domestic sewage treatment coexist. Based on the field investigation of 15 administrative villages in 3 districts and counties of Dongying City, there is a big gap between the development status of rural domestic sewage treatment and expectations. Investigate rural domestic sewage treatment cases in-depth, and condense four modes of primitive, developmental, mature and advanced in a variety of different rural domestic sewage treatment models for discussion, among which, the village sewage treatment work under the mature mode has achieved remarkable results, and is at the forefront of the current rural domestic sewage treatment. Through the multi-case analysis method, the practical dilemma of sewage treatment in different models of villages is summarized, and the feasible improvement path is explored, which contributes to the ecological protection and high-quality development of Dongying and the Yellow River Basin.
基金supported in part by the United Fund Project of National Natural Science Foundation of China - Guangdong (No. U1133003)the National Natural Science Foundation of China (No. 41076068)
文摘The aquatic environments of the Pearl River Delta in Southern China are subjected to contamination with various industrial chemicals from local industries. In this paper, the occurrence, seasonal variation and spatial distribution of alkylphenol octylphenol (OP) and nonylphenol (NP) in fiver surface water and sediments in the runoff outlets of the Pearl River Delta were investigated. NP and OP were detected in all water and sediment samples and their mean concentrations in surface water during the dry season ranged from 810 to 3366 ng/L and 85.5 to 581 ng/L, respectively, and those in sediments ranged from 14.2 to 95.2 ng/g dw and 0.4 to 3.0 ng/g dw, respectively. In surface water, much higher concentrations were detected in the dry season than those in the wet season. In sediments, the concentrations in the dry season were also mostly higher. High concentrations of NP and OP were found in Humen outlet, likely due to high levels of domestic and industrial wastewater discharges. An ecological risk assessment with the use of hazard quotient (HQ) was also carried out and the HQvalues ranged from 3.6 × 10^-5 to 35 and 64% of samples gave a HQ 〉 1, indicating that the current levels of NP and OP pose a significant risk to the relevant aquatic organisms in the region.
基金provided by the ‘National Water Pollution Control and Management Technology Major Projects of China (2012ZX07203-006)’
文摘The river ecosystem in the Hai River Basin(HRB), an important economic region in China, is seriously degraded. With the aim of river restoration in the HRB, we developed a method to assess the river's ecological status and conducted a preliminary application of the method.The established method was a predictive model, which used macroinvertebrates as indicator organisms. The river's ecological status was determined by calculating the ratio of observed to expected values(O/E). The method included ecoregionalization according to natural factors, and the selection of reference sites based on combinations of habitat quality and macroinvertebrate community. Macroinvertebrate taxa included Insecta,Crustacea, Gastropoda, and Oligochaeta, with 39 families and 95 genera identified in the HRB. The HRB communities were dominated by pollution tolerant taxa, such as Lymnaeidae, Chironomus, Limnodrilus, Glyptotendipes, and Tubifex. The average Shannon–Wiener index was 1.40 ± 0.5, indicating a low biodiversity. In the river length of 3.31 × 10^4 km, 55% of the sites were designated poor, with a bad ecological status. Among nine secondary river systems, Luan and Zi-ya had the best and worst river conditions,respectively. Only 17 reference site groups were selected for river management in the 41 ecoregions examined. This study lays the foundation for river restoration and related research in the HRB, and we anticipate further developments of this novel method.
文摘Recent rapid industrialization and urbanization in the Pearl River Delta (PRD) is character-ized by broad geographical dispersion, diversities of scales and technological levels, and the proliferation of small-scale township and individual enterprises. Such a pattern of fast development has brought widespread environmental perturbation that is becoming difficult to contain or control. This study surveys the present environmental status in urban areas of PRD, assesses the trends of environmental quality, and evaluates the ecological impacts of development in the region.
基金Project supported by the National Natural Science Foundation of China(Grant No.52179056),the Fundamental Research Funds for the Central Universities(Grant No.QNTD202303).
文摘Large wood in rivers can lead to accumulations in the river channel, affecting local flow structures, aquatic habitats, and the river’s topography. This plays a crucial role in the ecological restoration of the river. This paper presents flow field measurements downstream of six types of logjams at different flow velocities using acoustic Doppler velocimetry (ADV) for artificially designed engineered logjams. The results indicate that the presence of logjams reduces the flow velocity and increases the turbulent kinetic energy in the wake region, and as the distance downstream increases, the flow velocity and turbulence intensity in the wake region gradually return to the upstream level. The minimum values of normalized flow velocity under different conditions are located in the region of the bottommost logs. The differences in normalized flow velocity at various flow rates are not significant. Jets are less likely to be generated in logjams with larger and more concentrated projection areas, but the strength of the jet is influenced by the physical structure of the logjam (projection area, gap ratio). The flow distribution behind the logjam is primarily influenced by the proportion of the projected area in different regions. Changes in the vertical physical structure of the logjam have minimal effect on the lateral flow distribution. Flow velocity in the gap area (b0) at the bottom of different logjams is influenced by their physical structure. The larger the overall blockage area of the logjams, the larger the flow velocity in the bottom gap area will be. The flow velocity in the bottom gap area of a densely placed logjam is mainly influenced by the gap ratio. The velocity of flow in the gap area can impact the initiation and deposition of sediment near the logjam. However, the internal structure complexity of the logjam does not significantly affect river energy dissipation and flow attenuation. This study broadens the applicability of certain theoretical models and explores the impact of logjams on river ecology and channel geomorphology. The findings can serve as a theoretical foundation for ecological restoration, timber management, and logjam construction in rivers.
基金This work was supported by the National Natural Science Foundation of China[31600579]Henan Provincial Science and Technology Research Project[202102110234]Key Research Projects of Higher Education Institutions in Henan Province,China[21A220003].
文摘The destruction of the ecological system caused by urban expansion has led to the environmental deterioration,cities have become increasingly vulnerable.In this study,six districts and counties along the Yellow River in Zhengzhou were selected as the study area.First,green infrastructure elements were extracted by morphological spatial pattern analysis.Then,outside the urban areas,we used connectivity analysis to evaluate the importance of core areas,adopted minimum cumulative resistance model to extract potential corridors,and identified the important corridors by using the gravity model.Finally,in the urban areas,we set up an evaluation system to assess the demands for ecosystem services.The results showed that:(1)Seven landscape types of green infrastructure be identified in study area.(2)There are 17 vital cores,136 potential corridors,and 24 vital corridors outside the urban areas.(3)The blocks with high demand for ecosystem services are mostly concentrated in the old blocks with dense populations and poor infrastructure,and there are 5 blocks with comprehensive high-demand.Based on identified importance for green infrastructure land space,and high-demand level for ecosystem services areas in this study,a green infrastructure net plan was proposed based on spatial conservation prioritisation.