期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Survey on performance of vertical slot and nature-like fishways at Angu hydropower station, Southwest China
1
作者 Jun-jian Sun Jia-yue Shi +2 位作者 Qi Zhang Xiao-tao Shi Jun-jun Tan 《Water Science and Engineering》 EI CAS CSCD 2024年第1期83-91,共9页
To restore dam-blocked natural fish migratory passages,a growing number of artificial fishways have been built in water conservancy and hydropower projects in China.The Angu hydropower station involved diverse importa... To restore dam-blocked natural fish migratory passages,a growing number of artificial fishways have been built in water conservancy and hydropower projects in China.The Angu hydropower station involved diverse important fish habitats in the lower reaches of the Daduhe River in Southwest China.Therefore,a vertical slot fishway(VSF)and a nature-like fishway(NLF)were built near the backwater area of the reservoir to connect the upstream and downstream habitats.Hydrodynamic and aquatic ecological surveys were conducted after the completion of the project to estimate the fish passing effect of the two fishways.The results indicated that both fishways were in effective operation and could maintain the desired hydrodynamic conditions and be used by several local fish species.During the survey,149 fish from 15 species and 111 fish from 17 species were captured by the traps in the VSF and NLF,respectively,while 1263 fish from 27 species were found in the downstream area.Some species captured in the VSF were not found in the NLF,and vice versa,which implied the different preferences of fish.Meanwhile,3789 signals including 2099 upward ones and 1690 downward ones were monitored with an ultrasonic fish detector at the inlet of the VSF.These findings revealed the characteristics of fish species observed in and near the fishways and provided valuable insights into the different fish passing capabilities of VSFandNLF. 展开更多
关键词 Vertical slot fishway Nature-like fishway Aguatic ecological survey Fishwaymonitoring Statistical analysis
下载PDF
Source analysis and risk evaluation of heavy metal in the river sediment of polymetallic mining area:Taking the Tonglüshan skarn type Cu-Fe-Au deposit as an example,Hubei section of the Yangtze River Basin,China 被引量:2
2
作者 Jing Wang Xin-xin Zhang +5 位作者 Ai-fang Chen Bo Wang Qi-bin Zhao Guan-nan Liu Xiao Xiao Jin-nan Cao 《China Geology》 CAS 2022年第4期649-661,共13页
In this paper,25 sampling points of overlying deposits in Tonglushan mining area,Daye City,Hubei Province,China were tested for heavy metal content to explore pollution characteristics,pollution sources and ecological... In this paper,25 sampling points of overlying deposits in Tonglushan mining area,Daye City,Hubei Province,China were tested for heavy metal content to explore pollution characteristics,pollution sources and ecological risks of heavy metals in sediments.A geo-accumulation index method was used to evaluate the degree of heavy metal pollution in the sediment.The mean sediment quality guideline quotient was used for evaluating the ecological risk level of heavy metal in the sediment.And a method of correlation analysis,clustering analysis,and principal component analysis was used for preliminary analysis on the source of heavy metal in the sediment.It was indicated that there was extremely heavy metal pollution in the sediment,among which Cd was extremely polluted,Cu strongly contaminated,Zn,As,and Hg moderately contaminated,and Pb,Cr,and Ni were slightly contaminated.It was also indicated by the mean sediment quality guideline-quotient result that there was a high ecological risk of heavy metals in the sediment,and 64%of the sample sites had extremely high hidden biotoxic effects.For distribution,the contamination of branches was worse than that of the main channel of Daye Dagang,and the deposition of each heavy metal was mainly influenced by the distance from this sample site to the sewage draining exit of a tailings pond.The source analysis showed that the heavy metals in the sediment come from pollution discharging of mining and beneficiation companies,tailings ponds,smelting companies,and transport vehicles.In the study area,due to the influence of heavy metal discharging from these sources,the ecotoxicity of heavy metals in the sediment was extremely high,and Cd was the most toxic pollutant.The research figured out the key restoration area and elements for ecological restoration in the sediment of the Tonglüshan mining area,which could be referenced by monitoring and governance of heavy metal pollution in the sediment of the polymetallic mining area. 展开更多
关键词 Sediment Heavy metal pollution ecological risks Geo-accumulation index method Sediment quality guideline-quotient Cluster analysis Principal component analysis Skarn-type ecological environment survey Tonglüshan Daye Lake China
下载PDF
Source,migration,distribution,toxicological effects and remediation technologies of arsenic in groundwater in China 被引量:1
3
作者 Zhen Wang Hua-ming Guo +1 位作者 Hai-yan Liu Wei-min Zhang 《China Geology》 CAS CSCD 2023年第3期476-493,共18页
Groundwater with high arsenic(As) content seriously threatens human life and health. Drinking high-As groundwater for a long time will lead to various pathological changes such as skin cancer, liver cancer,and kidney ... Groundwater with high arsenic(As) content seriously threatens human life and health. Drinking high-As groundwater for a long time will lead to various pathological changes such as skin cancer, liver cancer,and kidney cancer. High-As groundwater has become one of the most serious environmental geological problems in China and even internationally. This paper aims to systematically summarize the sources,migration, distribution, toxicological effects, and treatment techniques of As in natural groundwater in China based on a large number of literature surveys. High-As groundwater in China is mainly distributed in the inland basins in arid and semi-arid environments and the alluvial and lacustrine aquifers in river deltas in humid environments, which are in neutral to weakly alkaline and strongly reducing environments.The content of As in groundwater varies widely, and As(Ⅲ) is the main form. The main mechanism of the formation of high-As groundwater in China is the reduced dissolution of Fe and Mn oxides under the action of organic matter and primary microorganisms, alkaline environment, intense evaporation and concentration, long-term water-rock interaction, and slow groundwater velocity, which promote the continuous migration and enrichment of As in groundwater. There are obvious differences in the toxicity of different forms of As. The toxic of As(Ⅲ) is far more than As(V), which is considered to be more toxic than methyl arsenate(MMA) and dimethyl arsenate(DMA). Inorganic As entering the body is metabolized through a combination of methylation(detoxification) and reduction(activation) and catalyzed by a series of methyltransferases and reductases. At present, remediation methods for high-As groundwater mainly include ion exchange technology, membrane filtration technology, biological treatment technology, nanocomposite adsorption technology, electrochemical technology, and so on. All the above remediation methods still have certain limitations, and it is urgent to develop treatment materials and technical means with stronger As removal performance and sustainability. With the joint efforts of scientists and governments of various countries in the future, this worldwide problem of drinking-water As poisoning will be solved as soon as possible. This paper systematically summarizes and discusses the hot research results of natural high-As groundwater, which could provide a reference for the related research of high-As groundwater in China and even the world. 展开更多
关键词 High arsenic groundwater Source and distribution Enrichment mechanism Skin cancer Liver cancer Kidney cancer Toxicological effect Remediation technology ecological geological survey engineering Hydrogeological survey engineering
下载PDF
When nets meet environmental DNA metabarcoding:integrative approach to unveil invertebrate community patterns of hypersaline lakes
4
作者 Matthew A.CAMPBELL Alex LAINI +2 位作者 Nicole E.WHITE Morten E.ALLENTOFT Mattia SACCÒ 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第4期1331-1340,共10页
Saline and hypersaline wetlands account for almost half of the volume of inland water globally.They provide pivotal habitat for a vast range of species,including crucial ecosystem services for humans such as carbon si... Saline and hypersaline wetlands account for almost half of the volume of inland water globally.They provide pivotal habitat for a vast range of species,including crucial ecosystem services for humans such as carbon sink storage and extractive resource reservoirs.Despite their importance,effective ecological assessment is in its infancy compared to current conventional surveys carried out in freshwater ecosystems.The integration of environmental DNA(eDNA)analysis and traditional techniques has the potential to transform biomonitoring processes,particularly in remote and understudied saline environments.In this context,this preliminary study aims to explore the potential of eDNA coupled with conventional approaches by targeting five hypersaline lakes at Rottnest Island(Wadjemup)in Western Australia.We focused on the invertebrate community,a widely accepted key ecological indicator to assess the conservational status in rivers and lakes.The combination of metabarcoding with morphology-based taxonomic analysis described 16 taxa belonging to the orders Anostraca,Diptera,Isopoda,and Coleoptera.DNA-based diversity assessment revealed more taxa at higher taxonomic resolution than the morphology-based taxonomic analysis.However,certain taxa(i.e.,Ephydridae,Stratyiomidae,Ceratopogonidae)were only identified via net surveying.Overall,our results indicate that great potential resides in combining conventional net-based surveys with novel eDNA approaches in saline and hypersaline lakes.Indeed,urgent and effective conservational frameworks are required to contrast the enormous pressure that these ecosystems are increasingly facing.Further investigations at larger spatial temporal scales will allow consolidation of robust,reliable,and affordable biomonitoring frameworks in the underexplored world of saline wetlands. 展开更多
关键词 MACROINVERTEBRATE HYPERSALINE e nvironmental DNA(eDNA) conservation ecological survey community composition
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部