With China's economic development and population growth,China's ecological environment continues to deteriorate.The comprehensive ecosystem restoration of the Shichuan River aims to build an ecosystem containi...With China's economic development and population growth,China's ecological environment continues to deteriorate.The comprehensive ecosystem restoration of the Shichuan River aims to build an ecosystem containing"mountains,rivers,forests,farmland,lakes and grass"by determining scientific and reasonable thickness of foreign soil,pollution restoration,ecological reconstruction,safeguard measures,etc.It brings new vitality to local ecological environment remodeling and economic development.展开更多
The report of the 19th National Congress of the Communist Party of China stated that it was necessary to establish and practice the concept that lucid waters and lush mountains are invaluable assets,treat the ecologic...The report of the 19th National Congress of the Communist Party of China stated that it was necessary to establish and practice the concept that lucid waters and lush mountains are invaluable assets,treat the ecological environment as life,and coordinate the management of mountains,rivers,forests,farmlands,lakes and grasslands.In recent years,China has organized a series of pilot projects for the ecological protection and restoration of mountains,rivers,forests,farmlands,lakes and grasslands,breaking the boundary between administrative divisions,departmental management and ecological elements,and implementing conservation and restoration oriented towards the improvement of ecosystem services,so as to solve the problem of the lack of overall planning for ecological protection and restoration projects and the separated management of ecological elements.This study systematically elaborated the theoretical basis and connotation characteristics of ecological protection and restoration of mountains,rivers,forests,farmlands,lakes and grasslands.It proposed the implementation path of ecological protection and restoration project of mountains,rivers,forests,farmlands,lakes and grasslands by taking the water source conservation area of Beijing-Tianjin-Hebei as a case,so as to provide reference for the implementation and decision-making management of ecological protection and restoration projects in various regions.展开更多
Qaidam basin is an important part of National Key Development Area–Lanzhou-Xining Area,is a key region of resource development in Western Development,is a National Circular Economy Pilot Zone.The focus of
In this paper,15 rivers and 10 lake reservoirs in the Liaohe River basin were taken as research objects. Based on six indexes: satisfaction situation of ecological water demand,standard-reaching rate of water quality ...In this paper,15 rivers and 10 lake reservoirs in the Liaohe River basin were taken as research objects. Based on six indexes: satisfaction situation of ecological water demand,standard-reaching rate of water quality in water function area,eutrophication index of lakes and reservoirs,longitudinal connectivity of rivers,reserve rate of important wetlands and status of important aquatic habitat,water ecological conditions of main rivers and lakes in the basin were evaluated. The results showed that the rivers with better ecology were mainly distributed in east mountainous area of Liaoning,such as the upper reaches of the Hunhe River and the Taizi River;the problems of water pollution,ecological water shortage and habitat shrinkage were widespread in the Liaohe River basin,and the situation of water ecological security in the Liaohe River basin still faced great pressure.展开更多
The evolutions of diatom floras and the total phosphorous (TP) concentrations in the historical period were reconstructed for two lakes, Longgan and Taibai in the middle Yangtze River,based on high resolutional fossil...The evolutions of diatom floras and the total phosphorous (TP) concentrations in the historical period were reconstructed for two lakes, Longgan and Taibai in the middle Yangtze River,based on high resolutional fossil diatom study from two sediment cores and an established regional diatom-TP transfer function. The TP concentration in Longgan Lake changed slightly in the range of 36-62 μg/L and kept its middle trophic level in the past 200 years. The changes of diatom assemblages reflect a macrophyte-dominated history of the lake. During the nineteenth century, the lake TP concentration increased comparatively, corresponding to the increase in abundance of benthic diatoms. The progressive increase of epiphytic diatoms since the onset of the twentieth century indicates the development of aquatic plants, coinciding with the twice drops of water TP level. The TP concentration in Taibai Lake kept a stable status about 50 μg/L before 1953 AD, while diatoms dominated by facultative planktonic Aulacoseira granulata shifted quickly to epiphytic diatom species, indicating a rapid expansion of aquatic vegetation. During 1953-1970 AD, the coverage of aquatic plants decreased greatly inferred by the low abundance of epiphytic diatoms as well as declined planktonic types, and the reconstructed TP concentration shows an obvious rising trend firstly, suggesting the beginning of the lake eutrophication. The lake was in the eutrophic condition after 1970, coinciding with the successive increase of planktonic diatoms. The comparison of the two lakes suggests the internal adjustment and purification function of aquatic plants for nutrients in water. The discrepancy of TP trends in the two lakes after 1960 reflects two different patterns of lake environmental response to human disturbance. Sediments in Taibai Lake clearly recorded the process of lake ecological transformation from the macrophyte-dominated stage to the algae-dominated stage. The limits of TP concentration (68-118 μg/L) in the transitional state can be considered as the critical value between the two stable ecosystems. Further work will be necessary to provide more evidence from the sediments in more eutrophic lakes for the primary inference. The reconstructive TP level and the inference of aquatic plants from fossil diatoms in different lakes, as well as their comparison provide a scientific basis for ecological restoration of eutrophic lakes in research regions.展开更多
文摘With China's economic development and population growth,China's ecological environment continues to deteriorate.The comprehensive ecosystem restoration of the Shichuan River aims to build an ecosystem containing"mountains,rivers,forests,farmland,lakes and grass"by determining scientific and reasonable thickness of foreign soil,pollution restoration,ecological reconstruction,safeguard measures,etc.It brings new vitality to local ecological environment remodeling and economic development.
文摘The report of the 19th National Congress of the Communist Party of China stated that it was necessary to establish and practice the concept that lucid waters and lush mountains are invaluable assets,treat the ecological environment as life,and coordinate the management of mountains,rivers,forests,farmlands,lakes and grasslands.In recent years,China has organized a series of pilot projects for the ecological protection and restoration of mountains,rivers,forests,farmlands,lakes and grasslands,breaking the boundary between administrative divisions,departmental management and ecological elements,and implementing conservation and restoration oriented towards the improvement of ecosystem services,so as to solve the problem of the lack of overall planning for ecological protection and restoration projects and the separated management of ecological elements.This study systematically elaborated the theoretical basis and connotation characteristics of ecological protection and restoration of mountains,rivers,forests,farmlands,lakes and grasslands.It proposed the implementation path of ecological protection and restoration project of mountains,rivers,forests,farmlands,lakes and grasslands by taking the water source conservation area of Beijing-Tianjin-Hebei as a case,so as to provide reference for the implementation and decision-making management of ecological protection and restoration projects in various regions.
基金sponsored by China Academy of Engineering Major Consulting Project (No: 2012-ZD-14)
文摘Qaidam basin is an important part of National Key Development Area–Lanzhou-Xining Area,is a key region of resource development in Western Development,is a National Circular Economy Pilot Zone.The focus of
基金Supported by the National Water Resources Protection Plan of the Ministry of Water Resources。
文摘In this paper,15 rivers and 10 lake reservoirs in the Liaohe River basin were taken as research objects. Based on six indexes: satisfaction situation of ecological water demand,standard-reaching rate of water quality in water function area,eutrophication index of lakes and reservoirs,longitudinal connectivity of rivers,reserve rate of important wetlands and status of important aquatic habitat,water ecological conditions of main rivers and lakes in the basin were evaluated. The results showed that the rivers with better ecology were mainly distributed in east mountainous area of Liaoning,such as the upper reaches of the Hunhe River and the Taizi River;the problems of water pollution,ecological water shortage and habitat shrinkage were widespread in the Liaohe River basin,and the situation of water ecological security in the Liaohe River basin still faced great pressure.
文摘The evolutions of diatom floras and the total phosphorous (TP) concentrations in the historical period were reconstructed for two lakes, Longgan and Taibai in the middle Yangtze River,based on high resolutional fossil diatom study from two sediment cores and an established regional diatom-TP transfer function. The TP concentration in Longgan Lake changed slightly in the range of 36-62 μg/L and kept its middle trophic level in the past 200 years. The changes of diatom assemblages reflect a macrophyte-dominated history of the lake. During the nineteenth century, the lake TP concentration increased comparatively, corresponding to the increase in abundance of benthic diatoms. The progressive increase of epiphytic diatoms since the onset of the twentieth century indicates the development of aquatic plants, coinciding with the twice drops of water TP level. The TP concentration in Taibai Lake kept a stable status about 50 μg/L before 1953 AD, while diatoms dominated by facultative planktonic Aulacoseira granulata shifted quickly to epiphytic diatom species, indicating a rapid expansion of aquatic vegetation. During 1953-1970 AD, the coverage of aquatic plants decreased greatly inferred by the low abundance of epiphytic diatoms as well as declined planktonic types, and the reconstructed TP concentration shows an obvious rising trend firstly, suggesting the beginning of the lake eutrophication. The lake was in the eutrophic condition after 1970, coinciding with the successive increase of planktonic diatoms. The comparison of the two lakes suggests the internal adjustment and purification function of aquatic plants for nutrients in water. The discrepancy of TP trends in the two lakes after 1960 reflects two different patterns of lake environmental response to human disturbance. Sediments in Taibai Lake clearly recorded the process of lake ecological transformation from the macrophyte-dominated stage to the algae-dominated stage. The limits of TP concentration (68-118 μg/L) in the transitional state can be considered as the critical value between the two stable ecosystems. Further work will be necessary to provide more evidence from the sediments in more eutrophic lakes for the primary inference. The reconstructive TP level and the inference of aquatic plants from fossil diatoms in different lakes, as well as their comparison provide a scientific basis for ecological restoration of eutrophic lakes in research regions.