[Objective] This study aimed to investigate the effects of cultivation methods on rice yield and economic benefits in the Dongting Lake area. [Method] A field plot experiment was conducted by adopting three different ...[Objective] This study aimed to investigate the effects of cultivation methods on rice yield and economic benefits in the Dongting Lake area. [Method] A field plot experiment was conducted by adopting three different planting patterns of artificial sowing, artificial throwing and mechanical transplanting. [Result] Rice yield of mechanical transplanting was 7.84% and 24.19% higher respectively than that of artificial sowing and artificial throwing. The effective panicles per unit area of mechanical transplanting and artificial throwing were less than that of artificial sowing. On the contrary, grains per spike, 1 000-grain weight and seed setting rate of mechanical transplanting and artificial throwing were less than those of artificial sowing. Mechanical transplanting of rice brought the highest net income 11 779.16 yuan/hm2, which was 1 697.72 and 3 631.84 yuan/hm2 higher than that of artificial throwing and artificial sowing. [Conclusion] Mechanical transplanting could promote rice productivity in Dongting Lake area, and could increase rice yields and economic returns.展开更多
The aim of this work was to present the common anaerobic digestion technologies in a typical farm-scale biogas plant in China. The comprehensive benefits of most biogas plants in China have not been fully assessed in ...The aim of this work was to present the common anaerobic digestion technologies in a typical farm-scale biogas plant in China. The comprehensive benefits of most biogas plants in China have not been fully assessed in past decades due to the limited information of the anaerobic digestion processes in biogas plants. This paper analyzed four key aspects (i.e., operational perfor- mance, nonrenewable energy (NE) savings, CO2 emission reduction (CER) and economic benefits (EBs)) of a typical farm-scale biogas plant, where beef cattle manure was used as feedstock. Owing to the monitoring system, stable operation was achieved with a hydraulic retention time of 18-22 days and a production of 876,000 m3 of biogas and 37,960t of digestate fertilizer annually. This could substantially substitute for the nonrenewable energy and chemical fertilizer. The total amount of NE savings and CER derived from biogas and digestate fertilizer was 2.10× 10^7 MJ (equivalent to 749.7 tee) and 9.71 × 10^5 kg, respectively. The EBs of the biogas plant was 6.84× 10^5 CNY.yr^-1 with an outputs-to-inputs ratio of 2.37. As a result, the monitoring system was proved to contribute significantly to the sound management and quantitative assessment of the biogas plant. Biogas plants could produce biogas which could be used to substitute fossil fuels and reduce the emissions of greenhouse gases, and digestate fertilizer is also an important bio-product.展开更多
文摘[Objective] This study aimed to investigate the effects of cultivation methods on rice yield and economic benefits in the Dongting Lake area. [Method] A field plot experiment was conducted by adopting three different planting patterns of artificial sowing, artificial throwing and mechanical transplanting. [Result] Rice yield of mechanical transplanting was 7.84% and 24.19% higher respectively than that of artificial sowing and artificial throwing. The effective panicles per unit area of mechanical transplanting and artificial throwing were less than that of artificial sowing. On the contrary, grains per spike, 1 000-grain weight and seed setting rate of mechanical transplanting and artificial throwing were less than those of artificial sowing. Mechanical transplanting of rice brought the highest net income 11 779.16 yuan/hm2, which was 1 697.72 and 3 631.84 yuan/hm2 higher than that of artificial throwing and artificial sowing. [Conclusion] Mechanical transplanting could promote rice productivity in Dongting Lake area, and could increase rice yields and economic returns.
文摘The aim of this work was to present the common anaerobic digestion technologies in a typical farm-scale biogas plant in China. The comprehensive benefits of most biogas plants in China have not been fully assessed in past decades due to the limited information of the anaerobic digestion processes in biogas plants. This paper analyzed four key aspects (i.e., operational perfor- mance, nonrenewable energy (NE) savings, CO2 emission reduction (CER) and economic benefits (EBs)) of a typical farm-scale biogas plant, where beef cattle manure was used as feedstock. Owing to the monitoring system, stable operation was achieved with a hydraulic retention time of 18-22 days and a production of 876,000 m3 of biogas and 37,960t of digestate fertilizer annually. This could substantially substitute for the nonrenewable energy and chemical fertilizer. The total amount of NE savings and CER derived from biogas and digestate fertilizer was 2.10× 10^7 MJ (equivalent to 749.7 tee) and 9.71 × 10^5 kg, respectively. The EBs of the biogas plant was 6.84× 10^5 CNY.yr^-1 with an outputs-to-inputs ratio of 2.37. As a result, the monitoring system was proved to contribute significantly to the sound management and quantitative assessment of the biogas plant. Biogas plants could produce biogas which could be used to substitute fossil fuels and reduce the emissions of greenhouse gases, and digestate fertilizer is also an important bio-product.