期刊文献+
共找到892篇文章
< 1 2 45 >
每页显示 20 50 100
Initiative Optimization Operation Strategy and Multi-objective Energy Management Method for Combined Cooling Heating and Power 被引量:4
1
作者 Feng Zhao Chenghui Zhang Bo Sun 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2016年第4期385-393,共9页
This paper proposed an initiative optimization operation strategy and multi-objective energy management method for combined cooling heating and power U+0028 CCHP U+0029 with storage systems. Initially, the initiative ... This paper proposed an initiative optimization operation strategy and multi-objective energy management method for combined cooling heating and power U+0028 CCHP U+0029 with storage systems. Initially, the initiative optimization operation strategy of CCHP system in the cooling season, the heating season and the transition season was formulated. The energy management of CCHP system was optimized by the multi-objective optimization model with maximum daily energy efficiency, minimum daily carbon emissions and minimum daily operation cost based on the proposed initiative optimization operation strategy. Furthermore, the pareto optimal solution set was solved by using the niche particle swarm multi-objective optimization algorithm. Ultimately, the most satisfactory energy management scheme was obtained by using the technique for order preference by similarity to ideal solution U+0028 TOPSIS U+0029 method. A case study of CCHP system used in a hospital in the north of China validated the effectiveness of this method. The results showed that the satisfactory energy management scheme of CCHP system was obtained based on this initiative optimization operation strategy and multi-objective energy management method. The CCHP system has achieved better energy efficiency, environmental protection and economic benefits. © 2014 Chinese Association of Automation. 展开更多
关键词 CARBON cooling cooling systems energy efficiency energy management heating Multiobjective optimization OPTIMIZATION Pareto principle
下载PDF
Economic Power Dispatching from Distributed Generations: Review of Optimization Techniques
2
作者 Paramjeet Kaur Krishna Teerth Chaturvedi Mohan Lal Kolhe 《Energy Engineering》 EI 2024年第3期557-579,共23页
In the increasingly decentralized energy environment,economical power dispatching from distributed generations(DGs)is crucial to minimizing operating costs,optimizing resource utilization,and guaranteeing a consistent... In the increasingly decentralized energy environment,economical power dispatching from distributed generations(DGs)is crucial to minimizing operating costs,optimizing resource utilization,and guaranteeing a consistent and sustainable supply of electricity.A comprehensive review of optimization techniques for economic power dispatching from distributed generations is imperative to identify the most effective strategies for minimizing operational costs while maintaining grid stability and sustainability.The choice of optimization technique for economic power dispatching from DGs depends on a number of factors,such as the size and complexity of the power system,the availability of computational resources,and the specific requirements of the application.Optimization techniques for economic power dispatching from distributed generations(DGs)can be classified into two main categories:(i)Classical optimization techniques,(ii)Heuristic optimization techniques.In classical optimization techniques,the linear programming(LP)model is one of the most popular optimization methods.Utilizing the LP model,power demand and network constraints are met while minimizing the overall cost of generating electricity from DGs.This approach is efficient in determining the best DGs dispatch and is capable of handling challenging optimization issues in the large-scale system including renewables.The quadratic programming(QP)model,a classical optimization technique,is a further popular optimization method,to consider non-linearity.The QP model can take into account the quadratic cost of energy production,with consideration constraints like network capacity,voltage,and frequency.The metaheuristic optimization techniques are also used for economic power dispatching from DGs,which include genetic algorithms(GA),particle swarm optimization(PSO),and ant colony optimization(ACO).Also,Some researchers are developing hybrid optimization techniques that combine elements of classical and heuristic optimization techniques with the incorporation of droop control,predictive control,and fuzzy-based methods.These methods can deal with large-scale systems with many objectives and non-linear,non-convex optimization issues.The most popular approaches are the LP and QP models,while more difficult problems are handled using metaheuristic optimization techniques.In summary,in order to increase efficiency,reduce costs,and ensure a consistent supply of electricity,optimization techniques are essential tools used in economic power dispatching from DGs. 展开更多
关键词 economic power dispatching distributed generations decentralized energy cost minimization optimization techniques
下载PDF
Comparison of life cycle performance of distributed energy system and conventional energy system for district heating and cooling in China 被引量:1
3
作者 LIU Chang-rong TANG Yi-fang +4 位作者 WANG Han-qing LIU Zhi-qiang YANG Sheng LI Chao-jun JIN Wen-ting 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第7期2357-2376,共20页
The distributed energy system has achieved significant attention in respect of its application for singlebuilding cooling and heating.Researching on the life cycle environmental impact of distributed energy systems(DE... The distributed energy system has achieved significant attention in respect of its application for singlebuilding cooling and heating.Researching on the life cycle environmental impact of distributed energy systems(DES)is of great significance to encourage and guide the development of DES in China.However,the environmental performance of distributed energy systems in a building cooling and heating has not yet been carefully analyzed.In this study,based on the standards of ISO14040-2006 and ISO14044-2006,a life-cycle assessment(LCA)of a DES was conducted to quantify its environmental impact and a conventional energy system(CES)was used as the benchmark.GaBi 8 software was used for the LCA.And the Centre of Environmental Science(CML)method and Eco-indicator 99(EI 99)method were used for environmental impact assessment of midpoint and endpoint levels respectively.The results indicated that the DES showed a better life-cycle performance in the usage phase compared to the CES.The life-cycle performance of the DES was better than that of the CES both at the midpoint and endpoint levels in view of the whole lifespan.It is because the CES to DES indicator ratios for acidification potential,eutrophication potential,and global warming potential are 1.5,1.5,and 1.6,respectively at the midpoint level.And about the two types of impact indicators of ecosystem quality and human health at the endpoint level,the CES and DES ratios of the other indicators are greater than1 excepting the carcinogenicity and ozone depletion indicators.The human health threat for the DES was mainly caused by energy consumption during the usage phase.A sensitivity analysis showed that the climate change and inhalable inorganic matter varied by 1.3%and 6.1%as the electricity increased by 10%.When the natural gas increased by 10%,the climate change and inhalable inorganic matter increased by 6.3%and 3.4%,respectively.The human health threat and environmental damage caused by the DES could be significantly reduced by the optimization of natural gas and electricity consumption. 展开更多
关键词 life-cycle assessment distributed energy system conventional energy system building cooling and heating environmental impact
下载PDF
Water, Air Emissions, and Cost Impacts of Air-Cooled Microturbines for Combined Cooling, Heating, and Power Systems: A Case Study in the Atlanta Region
4
作者 Jean-Ann James Valerie M. Thomas +2 位作者 Arka Pandit Duo Li John C. Crittenden 《Engineering》 SCIE EI 2016年第4期470-480,共11页
The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the po... The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the potential to improve the energy generation efficiency of a city or urban region by providing energy for heating, cooling, and electricity simultaneously. The purpose of this study is to estimate the water consumption for energy generation use, carbon dioxide (CO2) and NOx emissions, and economic impact of implementing CCHP systems for five generic building types within the Atlanta metropolitan region, under various operational scenarios following the building thermal (heating and cooling) demands. Operating the CCHP system to follow the hourly thermal demand reduces CO2 emissions for most building types both with and without net metering. The system can be economically beneficial for all building types depending on the price of natural gas, the implementation of net metering, and the cost structure assumed for the CCHP system. The greatest reduction in water consumption for energy production and NOx emissions occurs when there is net metering and when the system is operated to meet the maximum yearly thermal demand, although this scenario also results in an increase in greenhouse gas emissions and, in some cases, cost. CCHP systems are more economical for medium office, large office, and multifamilv residential buildings. 展开更多
关键词 Combined cooling heating and power (CCHP) Air-cooled microturbines Distributed energy generation Water for energy production Net metering
下载PDF
A Financial Approach to Evaluate an Optimized Combined Cooling, Heat and Power System 被引量:20
5
作者 Shahab Bahrami Farahbakhsh Safe 《Energy and Power Engineering》 2013年第5期352-362,共11页
Iran’s removing subsidy from energy carrier in four years ago leads to spike electricity price dramatically. This abrupt change increases the interest on distributed generation (DG) because of its several benefits su... Iran’s removing subsidy from energy carrier in four years ago leads to spike electricity price dramatically. This abrupt change increases the interest on distributed generation (DG) because of its several benefits such as lower electricity generation price. In Iran among all type of DGs, because of wide natural gas network infrastructure and several incentives that government legislated to support combined cooling, heat and power (CCHP) investors, this type of technology is more prevalent in comparison with other technologies. Between existing CCHP technologies, certain economic choices are to be taken into account. For different buildings with different load curves, suitable size and operation of CCHP should be calculated to make the project more feasible. If CCHP does not well suited for a position, then the whole energy efficiency would be plunged significantly. In this paper, a model to find the optimal size and operation of CCHP and auxiliary boiler for any users is proposed by considering an integrated view of electricity and natural gas network using GAMS software. Then this method is applying for a hospital in Tehran as a real case study. Finally, by applying COMFAR III software, useful financial parameters and sensitivity analysis are calculated. 展开更多
关键词 Combined cooling HEAT and power (CCHP) energy HUB Optimal SIZE FINANCIAL Analysis
下载PDF
Analysis and Economic Evaluation of Hourly Operation Strategy Based on MSW Classification and LNG Multi-Generation System
6
作者 Xueqing Lu Yuetao Shi Jinsong Li 《Energy Engineering》 EI 2023年第6期1325-1352,共28页
In this study,a model of combined cooling,heating and power system with municipal solid waste(MSW)and liquefied natural gas(LNG)as energy sources was proposed and developed based on the energy demand of a large commun... In this study,a model of combined cooling,heating and power system with municipal solid waste(MSW)and liquefied natural gas(LNG)as energy sources was proposed and developed based on the energy demand of a large community,andMSW was classified and utilized.The systemoperated by determining power by heating load,and measures were taken to reduce operating costs by purchasing and selling LNG,natural gas(NG),cooling,heating,and power.Based on this system model,three operation strategies were proposed based on whether MSW was classified and the length of kitchen waste fermentation time,and each strategy was simulated hourly throughout the year.The results showed that the strategy of MSW classified and centralized fermentation of kitchen waste in summer(i.e.,strategy 3)required the least total amount of LNG for the whole year,which was 47701.77 t.In terms of total annual cost expenditure,strategy 3 had the best overall economy,with the lowest total annual expenditure of 2.7730×108 RMB at LNG and NG unit prices of 4 and 4.2 RMB/kg,respectively.The lower heating value of biogas produced by fermentation of kitchen waste from MSW being classified was higher than that of MSW before being classified,so the average annual thermal economy of the operating strategy of MSW being classified was better than that of MSW not being classified.Among the strategies in which MSW was classified and utilized,strategy 3 could better meet the load demand of users in the corresponding season,and thus this strategy had better thermal economy than the strategy of year-round fermentation of kitchen waste(i.e.,strategy 2).The hourly analysis data showed that the net electrical efficiency of the system varies in the same trend as the cooling,heating and power loads in all seasons,while the relationship between the energy utilization efficiency and load varied from season to season.This study can provide guidance for the practical application of MSW being classified in the system. 展开更多
关键词 Municipal solid waste liquefied natural gas energy recovery combined power heating and cooling determining power by heating load net electrical efficiency energy utilization efficiency
下载PDF
Techno-Economic and Sustainability Analysis of Potential Cooling Methods in Irish Data Centres
7
作者 Lee Gibbons Tim Persoons Sajad Alimohammadi 《Journal of Electronics Cooling and Thermal Control》 2021年第3期35-54,共20页
11% of Irish electricity was consumed by data centres in 2020. The Irish data centre industry and the cooling methods utilised require reformative actions in the coming years to meet EU Energy policies. The resell of ... 11% of Irish electricity was consumed by data centres in 2020. The Irish data centre industry and the cooling methods utilised require reformative actions in the coming years to meet EU Energy policies. The resell of heat, alternative cooling methods or carbon reduction methods are all possibilities to conform to these policies. This study aims to determine the viability of the resell of waste heat from data centres both technically and economically. This was determined using a novel application of thermodynamics to determine waste heat recovery potential in Irish data centres, and the current methods of heat generation for economical comparison. This paper also explores policy surrounding waste heat recovery within the industry. The Recoverable Carnot Equivalent Power (RCEP) is theoretically calculated for the three potential cooling methods for Irish data centres. These are air, hybrid, and immersion cooling techniques. This is the maximum useable heat that can be recovered from a data centre rack. This study is established under current operating conditions which are optimised for cooling performance, that air cooling has the highest potential RCEP of 0.39 kW/rack. This is approximately 8% of the input electrical power that can be captured as useable heat. Indicating that Irish data centres have the energy potential to be heat providers in the Irish economy. This study highlighted the technical and economic aspects of prevalent cooling techniques and determined air cooling heat recovery cost can be reduced to 0.01 €/kWhth using offsetting. This is financially competitive with current heating solutions in Ireland. 展开更多
关键词 IRELand Data Centres TECHNO-economic Novel cooling Methods Heat Resell SUSTAINABILITY energy Demand
下载PDF
Optimal Operation and Size for an Energy Hub with CCHP 被引量:2
8
作者 Ali Mohammad Ranjbar Amir Moshari +1 位作者 Hashem Oraee Aras Sheikhi 《Energy and Power Engineering》 2011年第5期641-649,共9页
The interest in distributed generation has been increasing in recent years, especially due to technical devel- opment on generation systems that meet environmental and energy policy concerns. One of the most impor- ta... The interest in distributed generation has been increasing in recent years, especially due to technical devel- opment on generation systems that meet environmental and energy policy concerns. One of the most impor- tant distributed energy technologies is Combined Cooling, Heat and Power (CCHP) systems. CCHP is a small and self-contained electric, heating and cooling generation plant that can provide power for households, commercial or industrial facilities. It can reduce power loss and enhance service reliability in distribution systems. The proposed method in this paper determines the optimal size and operation of CCHP, auxiliary boiler and also heat storage unit as elements of an energy hub, for users by an integrated view of electricity and natural gas network. Authors apply cost and benefit analysis in the optimization. To confirm the proposed method, the optimum sizes of these elements are determined for a hotel in Tehran as a case study. 展开更多
关键词 Combined cooling heating and power (CCHP) Cost and BENEFIT Analysis energy HUB OPTIMAL Operation OPTIMAL SIZE
下载PDF
Thermodynamic Analysis of Solid Oxide Fuel Cell Based Combined Cooling,Heating,and Power System Integrated with Solar-Assisted Electrolytic Cell 被引量:2
9
作者 GAO Yuefen YAO Wenqi +1 位作者 WANG Jiangjiang CUI Zhiheng 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第1期93-108,共16页
Syngas fuel such as hydrogen and carbon monoxide generated by solar energy is a promising method to use solar energy and overcome its fluctuation effectively.This study proposes a combined cooling,heating,and power sy... Syngas fuel such as hydrogen and carbon monoxide generated by solar energy is a promising method to use solar energy and overcome its fluctuation effectively.This study proposes a combined cooling,heating,and power system using the reversible solid oxide fuel cell assisted by solar energy to produce solar fuel and then supply energy products for users during the period without solar radiation.The system runs a solar-assisted solid oxide electrolysis cell mode and a solid oxide fuel cell mode.The thermodynamic models are constructed,and the energetic and exergetic performances are analyzed.Under the design work conditions,the SOEC mode’s overall system energy and exergy efficiencies are 19.0%and 20.5%,respectively.The electrical,energy and exergy efficiencies in the SOFC mode are 51.4%,71.3%,and 45.2%,respectively.The solid oxide fuel cell accounts for 60.0%of total exergy destruction,caused by the electrochemical reactions’thermodynamic irreversibilities.The increase of operating temperature of solid oxide fuel cell from 800℃to 1050℃rises the exergy and energy efficiencies by 11.3%and 12.3%,respectively.Its pressure from 0.2 to 0.7 MPa improves electrical efficiency by 13.8%while decreasing energy and exergy efficiencies by 5.2%and 6.0%,respectively. 展开更多
关键词 solid oxide electrolysis cell(SOEC) solid oxide fuel cell(SOFC) solar energy combined cooling heating and power(CCHP) exergy analysis
原文传递
Optimal Thermal Insulation Thickness in Isolated Air-Conditioned Buildings and Economic Analysis
10
作者 Mousa M. Mohamed 《Journal of Electronics Cooling and Thermal Control》 2020年第2期23-45,共23页
The removal building heat load and electrical power consumption by air conditioning system are proportional to the outside conditions and solar radiation intensity. Building construction materials has substantial effe... The removal building heat load and electrical power consumption by air conditioning system are proportional to the outside conditions and solar radiation intensity. Building construction materials has substantial effects on the transmission heat through outer walls, ceiling and glazing windows. Good thermal isolation for buildings is important to reduce the transmitted heat and consumed power. The buildings models are constructed from common materials with 0 - 16 cm of thermal insulation thickness in the outer walls and ceilings, and double-layers glazing windows. The building heat loads were calculated for two types of walls and ceiling with and without thermal insulation. The cooling load temperature difference method, <em>CLTD</em>, was used to estimate the building heat load during a 24-hour each day throughout spring, summer, autumn and winter seasons. The annual cooling degree-day, <em>CDD</em> was used to estimate the optimal thermal insulation thickness and payback period with including the solar radiation effect on the outer walls surfaces. The average saved energy percentage in summer, spring, autumn and winter are 35.5%, 32.8%, 33.2% and 30.7% respectively, and average yearly saved energy is about of 33.5%. The optimal thermal insulation thickness was obtained between 7 - 12 cm and payback period of 20 - 30 month for some Egyptian Cities according to the Latitude and annual degree-days. 展开更多
关键词 Building Heat Load cooling Load Temperature Difference energy Saving power Consumption Annual cooling Degree-Day Optimal Thermal Insulation Thickness Payback Period
下载PDF
Optimizing Grids Demand Reduction through Enhanced Heat Transfer in Low-Temperature Waste Heat Driven ORC Systems
11
作者 Cheng Wang Zizeng Gao 《Energy and Power Engineering》 2023年第12期457-467,共11页
With increasing awareness of energy conservation and environmental protection, the Organic Rankine Cycle (ORC) system has gained significant attention. This technology enables the recovery of industrial waste heat, wa... With increasing awareness of energy conservation and environmental protection, the Organic Rankine Cycle (ORC) system has gained significant attention. This technology enables the recovery of industrial waste heat, waste incineration heat, and renewable energy sources such as geothermal heat, biomass energy, and solar energy at lower temperatures. However, the low-grade heat source utilized in ORC systems faces a challenge to achieving high power generation efficiency and output power. Therefore, enhancing the power generation capacity of ORC systems is a key research focus in this field. An entranced heat exchanger ORC system with the screw expander driven by the low-temperature heat source is established to investigate the relevant performance. Hot water temperature from 77°C to 132°C is adopted for performance analysis, while the environmental temperature is approximately 25°C. Refrigerant R245fa is selected as the working fluid, and the screw expander is employed for power generation. It is worth noting that the entranced heat exchanger ORC system has significant potential for low-temperature heat recovery. Experimental results indicate that the maximum power output is 12.83 kW, which is obtained at around 105°C hot water inlet temperature. Correspondingly, the average power output remains 11.75 kW, revealing the system’s high stability for power generation. The implementation of a plate heat exchanger for enhanced heat transfer has enabled a 50% reduction in system size compared to traditional shell-tube type ORC systems. Besides, economic calculations demonstrate substantial benefits associated with the ORC system. The calculations indicate an internal benefit of 560,000 RMB/year, accompanied by notable external benefits such as an energy saving and emission reduction potential of up to 784 t CO2 per year. Moreover, the payback period is 2.23 years. It shows a remarkable improvement in terms of performance and excellent economic benefits. As a result, the novel ORC presents a promising alternative for low-grade heat utilization as compared to conventional small-scale ORC systems. 展开更多
关键词 ORC (Organic Rankine Cycle) Plate Heat Exchanger Screw Expander power Output economic Analyse energy Saving
下载PDF
储液式CCS耦合P2G的综合能源系统低碳经济调度 被引量:2
12
作者 李欣 李涵文 +3 位作者 陈德秋 李新宇 鲁玲 郭攀锋 《电力系统及其自动化学报》 CSCD 北大核心 2024年第5期105-113,共9页
为应对电转气P2G(power-to-gas)和碳捕集系统CCS(carbon capture system)在可再生能源出力不足时耦合失效的问题,考虑对常规CCS引入CO_(2)储液罐以加强P2G和CCS的耦合。首先,构建储液式CCS和P2G的耦合模型,利用储液罐将CCS捕集的CO_(2)... 为应对电转气P2G(power-to-gas)和碳捕集系统CCS(carbon capture system)在可再生能源出力不足时耦合失效的问题,考虑对常规CCS引入CO_(2)储液罐以加强P2G和CCS的耦合。首先,构建储液式CCS和P2G的耦合模型,利用储液罐将CCS捕集的CO_(2)时移至可再生能源富足时段,供P2G再利用;其次,构建储液式CCS与P2G耦合的电热气综合能源系统日前优化调度模型;最后,以北方某工业园区为例进行仿真。结果证明所提模型可以充分利用CCS捕集的CO_(2),从而获得更好的经济和环境效益。 展开更多
关键词 电热气综合能源系统 储液式碳捕集系统 电转气 低碳经济调度
下载PDF
基于全生命周期评价的冷热电联供系统优化研究
13
作者 许小刚 嵇晓鹏 王惠杰 《太阳能学报》 EI CAS CSCD 北大核心 2024年第5期360-368,共9页
天然气与太阳能互补是提高能源利用率和实现节能减排的有效方法,该文构建一种光-气-储互补的冷热电联供(CCHP)系统。基于全生命周期理论,以一次能源节约率、总污染物减排率为目标函数,建立冷热电联供系统优化模型,应用遗传算法对系统变... 天然气与太阳能互补是提高能源利用率和实现节能减排的有效方法,该文构建一种光-气-储互补的冷热电联供(CCHP)系统。基于全生命周期理论,以一次能源节约率、总污染物减排率为目标函数,建立冷热电联供系统优化模型,应用遗传算法对系统变工况运行下的容量配置进行优化;将物质回收阶段纳入全生命周期评价,并在运输阶段考虑燃料运输。结果表明:经优化后,CCHP系统电跟随(FEL)策略可实现较好的节能减排效益。分供(SP)系统在物质回收阶段对环境的影响微乎其微,CCHP系统燃料运输能耗量远低于SP系统。 展开更多
关键词 冷热电联供系统 生命周期评估 能源消耗 污染物排放
下载PDF
Comprehensive power-supply planning for active distribution system considering cooling,heating and power load balance 被引量:24
14
作者 Xinwei SHEN Yingduo HAN +3 位作者 Shouzhen ZHU Jinghong ZHENG Qingsheng LI Jing NONG 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2015年第4期485-493,共9页
An active distribution system power-supply planning model considering cooling,heating and power load balance is proposed in this paper.A regional energy service company is assumed to be in charge of the investment and... An active distribution system power-supply planning model considering cooling,heating and power load balance is proposed in this paper.A regional energy service company is assumed to be in charge of the investment and operation for the system in the model.The expansion of substations,building up distributed combined cooling,heating and power(CCHP),gas heating boiler(GHB)and air conditioner(AC)are included as investment planning options.In terms of operation,the load scenarios are divided into heating,cooling and transition periods.Also,the extreme load scene is included to assure the power supply reliability of the system.Numerical results demonstrate the effectiveness of the proposed model and illustrate the economic benefits of applying distributed CCHP in regional power supply on investment and operation. 展开更多
关键词 Active distribution system Combined cooling heating and power(CCHP) power-supply planning Load balance
原文传递
Optimization of Operation Strategies for a Combined Cooling, Heating and Power System based on Adiabatic Compressed Air Energy Storage 被引量:8
15
作者 CHEN Shang ZHU Tong +2 位作者 GAN Zhongxue ZHU Xiaojun LIU Liuchen 《Journal of Thermal Science》 SCIE EI CAS CSCD 2020年第5期1135-1148,共14页
The fluctuations of renewable energy and various energy demands are crucial issues for the optimal design and operation of combined cooling,heating and power(CCHP)system.In this paper,a novel CCHP system is simulated ... The fluctuations of renewable energy and various energy demands are crucial issues for the optimal design and operation of combined cooling,heating and power(CCHP)system.In this paper,a novel CCHP system is simulated with advanced adiabatic compressed air energy storage(AA-CAES)technology as a join to connect with wind energy generation and an internal-combustion engine(ICE).The capital cost of utilities,energy cost,environmental protection cost and primary energy savings ratio(P E S R)are used as system performance indicators.To fulfill the cooling,heating and power requirements of a district and consider the thermal-electric coupling of ICE and AA-CAES in CCHP system,three operation strategies are established to schedule the dispatch of AA-CAES and ICE:ICE priority operation strategy,CAES priority operation strategy and simultaneous operation strategy.Each strategy leads the operation load of AA-CAES or ICE to improve the energy supply efficiency of the system.Moreover,to minimize comprehensive costs and maximize the P E S R,a novel optimization algorithm based on intelligent updating multi-objective differential evolution(MODE)is proposed to solve the optimization model.Considering the multi-interface characteristic and active management ability of the ICE and AA-CAES,the economic benefits and energy efficiency of the three operation strategies are compared by the simulation with the same system configuration.On a typical summer day,the simultaneous strategy is the best solution as the total cost is 3643 USD and the P E S R is 66.1%,while on a typical winter day,the ICE priority strategy is the best solution as the total cost is 4529 USD and the P E S R is 64.4%.The proposed methodology provides the CCHP based AA-CAES system with a better optimized operation. 展开更多
关键词 combined cooling heating and power(CCHP)system advanced adiabatic compressed air energy storage(AA-CAES) OPTIMIZATION
原文传递
Liquid Air Energy Storage for Decentralized Micro Energy Networks with Combined Cooling,Heating,Hot Water and Power Supply 被引量:1
16
作者 SHE Xiaohui ZHANG Tongtong +5 位作者 PENG Xiaodong WANG Li TONG Lige LUO Yimo ZHANG Xiaosong DING Yulong 《Journal of Thermal Science》 SCIE EI CAS CSCD 2021年第1期1-17,共17页
Liquid air energy storage(LAES)has been regarded as a large-scale electrical storage technology.In this paper,we first investigate the performance of the current LAES(termed as a baseline LAES)over a far wider range o... Liquid air energy storage(LAES)has been regarded as a large-scale electrical storage technology.In this paper,we first investigate the performance of the current LAES(termed as a baseline LAES)over a far wider range of charging pressure(1 to 21 MPa).Our analyses show that the baseline LAES could achieve an electrical round trip efficiency(e RTE)above 60%at a high charging pressure of 19 MPa.The baseline LAES,however,produces a large amount of excess heat particularly at low charging pressures with the maximum occurred at~1 MPa.Hence,the performance of the baseline LAES,especially at low charging pressures,is underestimated by only considering electrical energy in all the previous research.The performance of the baseline LAES with excess heat is then evaluated which gives a high e RTE even at lower charging pressures;the local maximum of 62%is achieved at~4 MPa.As a result of the above,a hybrid LAES system is proposed to provide cooling,heating,hot water and power.To evaluate the performance of the hybrid LAES system,three performance indicators are considered:nominal-electrical round trip efficiency(ne RTE),primary energy savings and avoided carbon dioxide emissions.Our results show that the hybrid LAES can achieve a high ne RTE between 52%and 76%,with the maximum at~5 MPa.For a given size of hybrid LAES(1 MW×8 h),the primary energy savings and avoided carbon dioxide emissions are up to 12.1 MWh and 2.3 ton,respectively.These new findings suggest,for the first time,that small-scale LAES systems could be best operated at lower charging pressures and the technologies have a great potential for applications in local decentralized micro energy networks. 展开更多
关键词 liquid air energy storage cryogenic energy storage micro energy grids combined heating cooling and power supply heat pump
原文传递
Feasibility Analysis of the Operation Strategies for Combined Cooling, Heating and Power Systems (CCHP) based on the Energy-Matching Regime 被引量:1
17
作者 FENG Lejun DAI Xiaoye +1 位作者 MO Junrong SHI Lin 《Journal of Thermal Science》 SCIE EI CAS CSCD 2020年第5期1149-1164,共16页
Although numerous studies have considered the two traditional operation strategies:following the electric load(FEL)and following the thermal load(FTL),for combined cooling,heating,and power(CCHP)systems in different c... Although numerous studies have considered the two traditional operation strategies:following the electric load(FEL)and following the thermal load(FTL),for combined cooling,heating,and power(CCHP)systems in different case studies,there are limited theoretical studies on the quantification methods to assess the feasibility of these two strategies in different load demands scenarios.Therefore,instead of a case study,we have undertaken a theoretical analysis of the suitable application scenarios for FEL and FTL strategies based on the energy-matching performance between systems'provision and users'demands.To compare the calculation models of energy saving rate(ESR)for FEL and FTL strategies in the left and right sub-regions of the energy-supply curve,a comprehensive parameter(^)that combines three inherently influential factors(off-design operation parameter,energy-matching parameter,and install capacity coefficient)is defined to determine the optimal installed capacity and feasibility of FEL or FTL strategies quantitatively.The results indicate that greater value of x contribute to a better energy saving performance,and FEL strategy shows better performance than FTL in most load demands scenarios,and the optimal installed capacity occurs when the load demand points were located in different regions of the energy-supply curve.Finally,taking a hotel in Beijing as an example,the value of the optimal install capacity coefficient is 0.845 and the FEL strategy is also suggested,and compared to the maximum install capacity,the average values of the ESR on a typical summer day,transition season,and winter can be enhanced by 3.9%,8.8%,and 1.89%,respectively. 展开更多
关键词 combined cooling heating and power systems(CCHP) energy-matching performance operation strategies comprehensive parameter energy saving performance
原文传递
计及改进阶梯型碳交易和热电联产机组灵活输出的园区综合能源系统低碳调度 被引量:4
18
作者 周伟 孙永辉 +2 位作者 谢东亮 殷晨旭 孟雲帆 《电网技术》 EI CSCD 北大核心 2024年第1期61-69,共9页
为了进一步降低园区综合能源系统(park-level integrated energy system,PIES)碳排放量,优化热电联产(combined heat and power,CHP)机组出力的灵活性,提出一种考虑改进阶梯型碳交易和CHP热电灵活输出的PIES低碳经济调度策略。首先,将... 为了进一步降低园区综合能源系统(park-level integrated energy system,PIES)碳排放量,优化热电联产(combined heat and power,CHP)机组出力的灵活性,提出一种考虑改进阶梯型碳交易和CHP热电灵活输出的PIES低碳经济调度策略。首先,将遗传算法与模糊控制相结合,设计一种遗传模糊碳交易参数优化器,从而对现有阶梯型碳交易机制进行改进,实现该机制参数的自适应变化;其次,在传统CHP中加入卡琳娜(Kalina)循环与电锅炉(electricboiler,EB),构造CHP热电灵活输出模型,以同时满足电、热负荷的不同需求;然后,提出一种柔性指标——电、热输出占比率,进而计算出电、热输出占比率区间,以衡量CHP运行灵活性;最后,将改进阶梯型碳交易机制和CHP热电灵活输出模型协同优化,以系统运行成本和碳交易成本之和最小为目标,构建PIES低碳经济优化模型。算例分析表明,所提策略可有效降低经济成本和碳排放量,同时还可扩展CHP灵活输出调节范围,能够为PIES低碳经济调度提供参考。 展开更多
关键词 园区综合能源系统 遗传模糊碳交易参数优化器 热电联产机组灵活输出 电、热输出占比率 低碳经济调度
下载PDF
建筑全能耗分析软件Energy Plus及其应用 被引量:76
19
作者 潘毅群 吴刚 Volker Hartkopf 《暖通空调》 北大核心 2004年第9期2-7,共6页
介绍了新一代建筑全能耗分析软件EnergyPlus的基本原理、特点和新功能及其与DOE 2的比较 ,并将其应用于某一实际的建筑冷热电联产系统的模拟 。
关键词 建筑 能耗分析 冷热电联产系统 经济性分析 软件 新一代 新功能 模拟 基本原理
下载PDF
含分层储能的冷热电联供系统运行优化
20
作者 高冰 李国翊 +2 位作者 梅晓辉 赵海洲 贾建东 《化学工程》 CSCD 北大核心 2024年第1期88-94,共7页
为提高冷热电联供型微电网对可再生能源的消纳能力,解决源-荷的不确定性使得系统运行稳定性降低的问题,提出含分层储能的三级混合时间尺度滚动优化方法。日前优化目标为日运行成本最低;日内上层以燃料成本和蓄热罐功率变化惩罚成本最低... 为提高冷热电联供型微电网对可再生能源的消纳能力,解决源-荷的不确定性使得系统运行稳定性降低的问题,提出含分层储能的三级混合时间尺度滚动优化方法。日前优化目标为日运行成本最低;日内上层以燃料成本和蓄热罐功率变化惩罚成本最低为目标对冷热能进行优化,下层以电网交互成本和蓄电池功率变化惩罚成本最低为优化目标对电能进行优化;实时电系统反馈以电系统削峰填谷作用量和功率波动量最低为优化目标;得出最优的系统中各设备的出力计划。结果表明:该优化方法和分层储能能够有效达到削峰填谷的作用,各设备功率波动率均处于较低水平;冬季典型日的日运行成本比日前成本有所降低。 展开更多
关键词 冷热电联供型微电网 分层储能 滚动优化 分时间尺度 运行优化
下载PDF
上一页 1 2 45 下一页 到第
使用帮助 返回顶部