In the increasingly decentralized energy environment,economical power dispatching from distributed generations(DGs)is crucial to minimizing operating costs,optimizing resource utilization,and guaranteeing a consistent...In the increasingly decentralized energy environment,economical power dispatching from distributed generations(DGs)is crucial to minimizing operating costs,optimizing resource utilization,and guaranteeing a consistent and sustainable supply of electricity.A comprehensive review of optimization techniques for economic power dispatching from distributed generations is imperative to identify the most effective strategies for minimizing operational costs while maintaining grid stability and sustainability.The choice of optimization technique for economic power dispatching from DGs depends on a number of factors,such as the size and complexity of the power system,the availability of computational resources,and the specific requirements of the application.Optimization techniques for economic power dispatching from distributed generations(DGs)can be classified into two main categories:(i)Classical optimization techniques,(ii)Heuristic optimization techniques.In classical optimization techniques,the linear programming(LP)model is one of the most popular optimization methods.Utilizing the LP model,power demand and network constraints are met while minimizing the overall cost of generating electricity from DGs.This approach is efficient in determining the best DGs dispatch and is capable of handling challenging optimization issues in the large-scale system including renewables.The quadratic programming(QP)model,a classical optimization technique,is a further popular optimization method,to consider non-linearity.The QP model can take into account the quadratic cost of energy production,with consideration constraints like network capacity,voltage,and frequency.The metaheuristic optimization techniques are also used for economic power dispatching from DGs,which include genetic algorithms(GA),particle swarm optimization(PSO),and ant colony optimization(ACO).Also,Some researchers are developing hybrid optimization techniques that combine elements of classical and heuristic optimization techniques with the incorporation of droop control,predictive control,and fuzzy-based methods.These methods can deal with large-scale systems with many objectives and non-linear,non-convex optimization issues.The most popular approaches are the LP and QP models,while more difficult problems are handled using metaheuristic optimization techniques.In summary,in order to increase efficiency,reduce costs,and ensure a consistent supply of electricity,optimization techniques are essential tools used in economic power dispatching from DGs.展开更多
Energy efficiency, which consists of using less energy or improving the level of service to energy consumers, refers to an effective way to provide overall energy. But its increasing pressure on the energy sector to c...Energy efficiency, which consists of using less energy or improving the level of service to energy consumers, refers to an effective way to provide overall energy. But its increasing pressure on the energy sector to control greenhouse gases and to reduce CO2 emissions forced the power system operators to consider the emission problem as a consequential matter besides the economic problems. The economic power dispatch problem has, therefore, become a multi-objective optimization problem. Fuel cost, pollutant emissions, and system loss should be minimized simultaneously while satisfying certain system constraints. To achieve a good design with different solutions in a multi-objective optimization problem, fuel cost and pollutant emissions are converted into single optimization problem by introducing penalty factor. Now the power dispatch is formulated into a hi-objective optimization problem, two objectives with two algorithms, firefly algorithm for optimization the fuel cost, pollutant emissions and the real genetic algorithm for minimization of the transmission losses. In this paper the new approach (firefly algorithm-real genetic algorithm, FFA-RGA) has been applied to the standard IEEE 30-bus 6-generator. The effectiveness of the proposed approach is demonstrated by comparing its performance with other evolutionary multi- objective optimization algorithms. Simulation results show the validity and feasibility of the proposed method.展开更多
文摘In the increasingly decentralized energy environment,economical power dispatching from distributed generations(DGs)is crucial to minimizing operating costs,optimizing resource utilization,and guaranteeing a consistent and sustainable supply of electricity.A comprehensive review of optimization techniques for economic power dispatching from distributed generations is imperative to identify the most effective strategies for minimizing operational costs while maintaining grid stability and sustainability.The choice of optimization technique for economic power dispatching from DGs depends on a number of factors,such as the size and complexity of the power system,the availability of computational resources,and the specific requirements of the application.Optimization techniques for economic power dispatching from distributed generations(DGs)can be classified into two main categories:(i)Classical optimization techniques,(ii)Heuristic optimization techniques.In classical optimization techniques,the linear programming(LP)model is one of the most popular optimization methods.Utilizing the LP model,power demand and network constraints are met while minimizing the overall cost of generating electricity from DGs.This approach is efficient in determining the best DGs dispatch and is capable of handling challenging optimization issues in the large-scale system including renewables.The quadratic programming(QP)model,a classical optimization technique,is a further popular optimization method,to consider non-linearity.The QP model can take into account the quadratic cost of energy production,with consideration constraints like network capacity,voltage,and frequency.The metaheuristic optimization techniques are also used for economic power dispatching from DGs,which include genetic algorithms(GA),particle swarm optimization(PSO),and ant colony optimization(ACO).Also,Some researchers are developing hybrid optimization techniques that combine elements of classical and heuristic optimization techniques with the incorporation of droop control,predictive control,and fuzzy-based methods.These methods can deal with large-scale systems with many objectives and non-linear,non-convex optimization issues.The most popular approaches are the LP and QP models,while more difficult problems are handled using metaheuristic optimization techniques.In summary,in order to increase efficiency,reduce costs,and ensure a consistent supply of electricity,optimization techniques are essential tools used in economic power dispatching from DGs.
文摘Energy efficiency, which consists of using less energy or improving the level of service to energy consumers, refers to an effective way to provide overall energy. But its increasing pressure on the energy sector to control greenhouse gases and to reduce CO2 emissions forced the power system operators to consider the emission problem as a consequential matter besides the economic problems. The economic power dispatch problem has, therefore, become a multi-objective optimization problem. Fuel cost, pollutant emissions, and system loss should be minimized simultaneously while satisfying certain system constraints. To achieve a good design with different solutions in a multi-objective optimization problem, fuel cost and pollutant emissions are converted into single optimization problem by introducing penalty factor. Now the power dispatch is formulated into a hi-objective optimization problem, two objectives with two algorithms, firefly algorithm for optimization the fuel cost, pollutant emissions and the real genetic algorithm for minimization of the transmission losses. In this paper the new approach (firefly algorithm-real genetic algorithm, FFA-RGA) has been applied to the standard IEEE 30-bus 6-generator. The effectiveness of the proposed approach is demonstrated by comparing its performance with other evolutionary multi- objective optimization algorithms. Simulation results show the validity and feasibility of the proposed method.