期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Paludification reduces black spruce growth rate but does not alter tree water use efficiency in Canadian boreal forested peatlands
1
作者 Joannie Beaulne Étienne Boucher +1 位作者 Michelle Garneau Gabriel Magnan 《Forest Ecosystems》 SCIE CSCD 2021年第2期373-386,共14页
Background:Black spruce(Picea mariana(Mill.)BSP)-forested peatlands are widespread ecosystems in boreal North America in which peat accumulation,known as the paludification process,has been shown to induce forest grow... Background:Black spruce(Picea mariana(Mill.)BSP)-forested peatlands are widespread ecosystems in boreal North America in which peat accumulation,known as the paludification process,has been shown to induce forest growth decline.The continuously evolving environmental conditions(e.g.,water table rise,increasing peat thickness)in paludified forests may require tree growth mechanism adjustments over time.In this study,we investigate tree ecophysiological mechanisms along a paludification gradient in a boreal forested peatland of eastern Canada by combining peat-based and tree-ring analyses.Carbon and oxygen stable isotopes in tree rings are used to document changes in carbon assimilation rates,stomatal conductance,and water use efficiency.In addition,paleohydrological analyses are performed to evaluate the dynamical ecophysiological adjustments of black spruce trees to site-specific water table variations.Results:Increasing peat accumulation considerably impacts forest growth,but no significant differences in tree water use efficiency(iWUE)are found between the study sites.Tree-ring isotopic analysis indicates no iWUE decrease over the last 100 years,but rather an important increase at each site up to the 1980 s,before iWUE stabilized.Surprisingly,inferred basal area increments do not reflect such trends.Therefore,iWUE variations do not reflect tree ecophysiological adjustments required by changes in growing conditions.Local water table variations induce no changes in ecophysiological mechanisms,but a synchronous shift in iWUE is observed at all sites in the mid-1980 s.Conclusions:Our study shows that paludification induces black spruce growth decline without altering tree water use efficiency in boreal forested peatlands.These findings highlight that failing to account for paludification-related carbon use and allocation could result in the overestimation of aboveground biomass production in paludified sites.Further research on carbon allocation strategies is of utmost importance to understand the carbon sink capacity of these widespread ecosystems in the context of climate change,and to make appropriate forest management decisions in the boreal biome. 展开更多
关键词 Black spruce growth Boreal biome Carbon allocation ecophysiological mechanisms Forested peatland Paludification Stable isotope Water use efficiency
下载PDF
In situ measurements of winter wheat diurnal changes in photosynthesis and environmental factors reveal new insight into photosynthesis improvement by super-high-yield cultivation
2
作者 MA Ming-yang LIU Yang +5 位作者 ZHANG Yao-wen QIN Wei-long WANG Zhi-min ZHANG Ying-hua LU Cong-ming LU Qing-tao 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第2期527-539,共13页
In past 30 years, the wheat yield per unit area of China has increased by 79%. The super-high-yield(SH) cultivation played an important role in improving the wheat photosynthesis and yield. In order to find the ecophy... In past 30 years, the wheat yield per unit area of China has increased by 79%. The super-high-yield(SH) cultivation played an important role in improving the wheat photosynthesis and yield. In order to find the ecophysiological mechanism underneath the high photosynthesis of SH cultivation, in situ diurnal changes in the photosynthetic gas exchange and chlorophyll(Chl) a fluorescence of field-grown wheat plants during the grain-filling stage and environmental factors were investigated. During the late grain-filling stage at 24 days after anthesis(DAA), the diurnal changes in net CO_(2) assimilation rate were higher under SH treatment than under high-yield(H) treatment. From 8 to 24 DAA, the actual quantum yield of photosystem II(PSII) electron transport in the light-adapted state(ΦPSII) in the flag leaves at noon under SH treatment were significantly higher than those under H treatment. The leaf temperature, soil temperature and soil moisture were better suited for higher rates of leaf photosynthesis under SH treatment than those under H treatment at noon. Such diurnal changes in environmental factors in wheat fields could be one of the mechanisms for the higher biomass and yield under SH cultivation than those under H cultivation. ΦPSII and CO_(2) exchange rate in wheat flag leaves under SH and H treatments had a linear correlation which could provide new insight to evaluate the wheat photosynthesis performance under different conditions. 展开更多
关键词 PHOTOSYNTHESIS Chl a fluorescence super-high-yield cultivation winter wheat ecophysiological mechanism
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部