期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Comparing the seasonal variation of parameter estimation of ecosystem carbon exchange between alpine meadow and cropland in Heihe River Basin,northwestern China
1
作者 HaiBo Wang MingGuo Ma 《Research in Cold and Arid Regions》 CSCD 2015年第3期216-228,共13页
Grasslands and agro-ecosystems occupy one-third of the global terrestrial area. However, great uncertainty still exists about their contributions to the global carbon cycle. This study used various combinations of a s... Grasslands and agro-ecosystems occupy one-third of the global terrestrial area. However, great uncertainty still exists about their contributions to the global carbon cycle. This study used various combinations of a simple ecosystem respiration model and a photosynthesis model to simulate the influence of different climate factors, specifically radiation, temperature, and moisture, on the ecosystem carbon exchange at two dissimilar study sites. Using a typical alpine meadow site in a cold region and a typical cropland site in an arid region as cases, we investigated the response char- acteristics of productivity of grasslands and croplands to different environmental factors, and analyzed the seasonal change patterns of different model parameters. Parameter estimations and uncertainty analyses were performed based on a Bayesian approach. Our results indicated that: (1) the net ecosystem exchange (NEE) of alpine meadow and seeded maize during the growing season presented obvious diurnal and seasonal variation patterns. On the whole, the alpine meadow and seeded maize ecosystems were both apparent sinks for atmospheric CO2; (2) in the daytime, the mean NEE of the two ecosystems had the largest values in July and the lowest values in October. However, overall carbon uptake in the cropland was greater than in the alpine meadow from June to September; (3) at the alpine meadow site, temperature was the main limiting factor influencing the ecosystem carbon exchange variations during the growing season, while the sensitivity to water limitation was relatively small since there is abundant of rainfall in this region; (4) at the cropland site, both temperature and moisture were the most important limiting factors for the variations of ecosystem carbon exchanges during the growing season; and (5) some parameters had an obvious characteristic of seasonal patterns, while others had only small seasonal variations. 展开更多
关键词 ecosystem carbon flux ecosystem respiration gross ecosystem productivity climatic factors alpine meadow farmland ecosystem
下载PDF
Warming effects on permafrost ecosystem carbon fluxes controlled by plant nutrients
2
《Science Foundation in China》 CAS 2017年第4期40-,共1页
With the support by the National Natural Science Foundation of China,a recent study by the research group led by Prof.Yang Yuanhe(杨元合)from the Institute of Botany,Chinese Academy of Sciences shows that plant nutrie... With the support by the National Natural Science Foundation of China,a recent study by the research group led by Prof.Yang Yuanhe(杨元合)from the Institute of Botany,Chinese Academy of Sciences shows that plant nutrients control the response of permafrost ecosystem carbon fluxes to warming。 展开更多
关键词 Warming effects on permafrost ecosystem carbon fluxes controlled by plant nutrients
原文传递
Ozone concentrations, flux and potential effect on yield during wheat growth in the NorthwestShandong Plain of China 被引量:12
3
作者 Zhilin Zhu Xiaomin Sun +1 位作者 Fenghua Zhao Franz X.Meixner 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第8期1-9,共9页
Ozone(O3) concentration and flux(Fo) were measured using the eddy covariance technique over a wheat field in the Northwest-Shandong Plain of China. The O3-induced wheat yield loss was estimated by utilizing O3expo... Ozone(O3) concentration and flux(Fo) were measured using the eddy covariance technique over a wheat field in the Northwest-Shandong Plain of China. The O3-induced wheat yield loss was estimated by utilizing O3exposure-response models. The results showed that:(1) During the growing season(7 March to 7 June, 2012), the minimum(16.1 ppb V) and maximum(53.3 ppb V)mean O3 concentrations occurred at approximately 6:30 and 16:00, respectively. The mean and maximum of all measured O3 concentrations were 31.3 and 128.4 ppb V, respectively. The variation of O3 concentration was mainly affected by solar radiation and temperature.(2) The mean diurnal variation of deposition velocity(V d) can be divided into four phases, and the maximum occurred at noon(12:00). Averaged V d during daytime(6:00–18:00) and nighttime(18:00–6:00) were 0.42 and 0.14 cm/sec, respectively. The maximum of measured V d was about1.5 cm/sec. The magnitude of V d was influenced by the wheat growing stage, and its variation was significantly correlated with both global radiation and friction velocity.(3) The maximum mean F o appeared at 14:00, and the maximum measured F o was-33.5 nmol/(m^2·sec). Averaged F o during daytime and nighttime were-6.9 and-1.5 nmol/(m^2·sec), respectively.(4) Using O3 exposure-response functions obtained from the USA, Europe, and China, the O3-induced wheat yield reduction in the district was estimated as 12.9% on average(5.5%–23.3%). Large uncertainties were related to the statistical methods and environmental conditions involved in deriving the exposure-response functions. 展开更多
关键词 Ozone concentration Ozone flux Deposition velocity Eddy covariance Yield loss estimation Cropland ecosystem
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部