A new form of producing and sharing knowledge has emerged as an international(United States of America,Asia,and Europe) research collaboration,known as the Long-Term Ecological Research(LTER) Network.Although Africa b...A new form of producing and sharing knowledge has emerged as an international(United States of America,Asia,and Europe) research collaboration,known as the Long-Term Ecological Research(LTER) Network.Although Africa boasts rich biodiversity,including endemic species,it lacks the long-term initiatives to underpin sustainable biodiversity managements.At present,climate change may exacerbate hunger and poverty concerns in addition to resulting in ecosystem degradation,land use change,and other threats in Africa.Therefore,ecosystem monitoring was suggested to understanding the effects of climate change and setting strategies to mitigate these changes.This paper aimed to investigate ecosystem monitoring ground sites and address their coverage gaps in Africa to provide a foundation for optimizing the African Ecosystem Research Network(AERN) ground sites.The geographic coordinates and characteristics of ground sites-based ecosystem monitoring were collected from various networks aligned with the LTER implementation in Africa.Additionally,climatic data and biodiversity distribution maps were retrieved from various sources.These data were used to assess the size of existing ground sites and the gaps in description,ecosystems and biomes.The results reveal that there were 1089 sites established by various networks.Among these sites,30.5%,27.5%,and 28.8% had no information of area,year of establishment,current status,respectively.However,68.0% of them had an area equal to or greater than 1 km2.Sites were created progressively over the course of the years,with 68.9% being created from 2000 to 2005.To date,only 41.5% of the sites were operational.The sites were scattered across Africa,but they were concentrated in Eastern and Southern Africa.The unbalanced distribution pattern of the sites left Central and Northern Africa hardly covered,and many unique ecosystems in Central Africa were not included.To sustain these sites,the AERN should be based on operational sites,seeking secure funding by establishing multiple partnerships.展开更多
Ecological restoration is widely employed from tens to millions of hectares in space,and from tens of days to thousands of years in time, which forces consideration of it thoroughly. We argue that three questions are ...Ecological restoration is widely employed from tens to millions of hectares in space,and from tens of days to thousands of years in time, which forces consideration of it thoroughly. We argue that three questions are the most important among the contents relevant of ecological restoration, including why, what and how to restore degraded systems. Why to restore determines whether or not the degraded ecological systems should be restored. What to restore is the goal of ecological restoration. The explicit goal of ecological restoration is necessary to guide ecological restoration workers in pursuit of excellence and prevent restoration from being swamped by purely technological activities. And how to restore means the methods and steps we should apply. To ensure the final success of ecological restoration, restored sites should be monitored and managed for long time to determine whether the selected methods are appropriate, and can be remedy better. Only to deal with these effectively, ecological restoration would be the hope for the future.展开更多
Background:Appraisal of arid land status is very crucial one to know the extent and factors associated with their degradation.Previous studies from arid regions are mostly qualitative in nature(indicator assessment li...Background:Appraisal of arid land status is very crucial one to know the extent and factors associated with their degradation.Previous studies from arid regions are mostly qualitative in nature(indicator assessment like good,moderate,severe,and very severe)and generally overlooked the significance of temporal fluctuation.Methods:In this study,the temporal status of 12 Indian arid lands was accessed by using a new integrated approach that includes attributes like relative converge score(RCS),herbaceous component score(HCS),soil quality indexModified(SQI),ecosystem monitoring value(EMV),and a modified bare patch index.From each land,data were collected during three seasonal events(pulse,inter-pulse,and non-pulse),and thus,status was evaluated with 36 observations.Data were analyzed by using frequency distribution,principal component analysis(PCA),student t test,and regression technique.Results:RCS and HCS were recorded minimum(0.005,0.65)during non-pulse event and maximum(0.36,1.79)during pulse event respectively.With this approach,multi-directional temporal status of lands identified that were grouped into lower(7),moderate(14),high(12),and very high(3)quality lands.Conclusion:This integrated study suggested that in arid regions,although rainfall triggers plant community composition,however,sole utilization of this parameter is unable to portray the true status of lands,and other physical(soil)and biotic(livestock and other anthropogenic)parameters are equally important and influential during other events.展开更多
The first-stage of an ecological conservation and restoration project in the Three-River Source Region(TRSR), China, has been in progress for eight years. However, because the ecological effects of this project rema...The first-stage of an ecological conservation and restoration project in the Three-River Source Region(TRSR), China, has been in progress for eight years. However, because the ecological effects of this project remain unknown, decision making for future project implementation is hindered. Thus, in this study, we developed an index system to evaluate the effects of the ecological restoration project, by integrating field observations, remote sensing, and process-based models. Effects were assessed using trend analyses of ecosystem structures and services. Results showed positive trends in the TRSR since the beginning of the project, but not yet a return to the optima of the 1970 s. Specifically, while continued degradation in grassland has been initially contained, results are still far from the desired objective, ‘grassland coverage increasing by an average of 20%–40%'. In contrast, wetlands and water bodies have generally been restored, while the water conservation and water supply capacity of watersheds have increased. Indeed, the volume of water conservation achieved in the project meets the objective of a 1.32 billion m^3 increase. The effects of ecological restoration inside project regions was more significant than outside, and, in addition to climate change projects, we concluded that the implementation of ecological conservation and restoration projects has substantially contributed to vegetation restoration. Nevertheless, the degradation of grasslands has not been fundamentally reversed, and to date the project has not prevented increasing soil erosion. In sum, the effects and challenges of this first-stage project highlight the necessity of continuous and long-term ecosystem conservation efforts in this region.展开更多
基金Under the auspices of National Natural Science Foundation of China(No.31161140355)
文摘A new form of producing and sharing knowledge has emerged as an international(United States of America,Asia,and Europe) research collaboration,known as the Long-Term Ecological Research(LTER) Network.Although Africa boasts rich biodiversity,including endemic species,it lacks the long-term initiatives to underpin sustainable biodiversity managements.At present,climate change may exacerbate hunger and poverty concerns in addition to resulting in ecosystem degradation,land use change,and other threats in Africa.Therefore,ecosystem monitoring was suggested to understanding the effects of climate change and setting strategies to mitigate these changes.This paper aimed to investigate ecosystem monitoring ground sites and address their coverage gaps in Africa to provide a foundation for optimizing the African Ecosystem Research Network(AERN) ground sites.The geographic coordinates and characteristics of ground sites-based ecosystem monitoring were collected from various networks aligned with the LTER implementation in Africa.Additionally,climatic data and biodiversity distribution maps were retrieved from various sources.These data were used to assess the size of existing ground sites and the gaps in description,ecosystems and biomes.The results reveal that there were 1089 sites established by various networks.Among these sites,30.5%,27.5%,and 28.8% had no information of area,year of establishment,current status,respectively.However,68.0% of them had an area equal to or greater than 1 km2.Sites were created progressively over the course of the years,with 68.9% being created from 2000 to 2005.To date,only 41.5% of the sites were operational.The sites were scattered across Africa,but they were concentrated in Eastern and Southern Africa.The unbalanced distribution pattern of the sites left Central and Northern Africa hardly covered,and many unique ecosystems in Central Africa were not included.To sustain these sites,the AERN should be based on operational sites,seeking secure funding by establishing multiple partnerships.
基金UndertheauspicesoftheNationalNaturalScienceFoundationof China (No.4033100830270225)
文摘Ecological restoration is widely employed from tens to millions of hectares in space,and from tens of days to thousands of years in time, which forces consideration of it thoroughly. We argue that three questions are the most important among the contents relevant of ecological restoration, including why, what and how to restore degraded systems. Why to restore determines whether or not the degraded ecological systems should be restored. What to restore is the goal of ecological restoration. The explicit goal of ecological restoration is necessary to guide ecological restoration workers in pursuit of excellence and prevent restoration from being swamped by purely technological activities. And how to restore means the methods and steps we should apply. To ensure the final success of ecological restoration, restored sites should be monitored and managed for long time to determine whether the selected methods are appropriate, and can be remedy better. Only to deal with these effectively, ecological restoration would be the hope for the future.
基金We sincerely thankful to UGC-CAS,DST-FIST for financial support to the Department of Botany of JNV University.
文摘Background:Appraisal of arid land status is very crucial one to know the extent and factors associated with their degradation.Previous studies from arid regions are mostly qualitative in nature(indicator assessment like good,moderate,severe,and very severe)and generally overlooked the significance of temporal fluctuation.Methods:In this study,the temporal status of 12 Indian arid lands was accessed by using a new integrated approach that includes attributes like relative converge score(RCS),herbaceous component score(HCS),soil quality indexModified(SQI),ecosystem monitoring value(EMV),and a modified bare patch index.From each land,data were collected during three seasonal events(pulse,inter-pulse,and non-pulse),and thus,status was evaluated with 36 observations.Data were analyzed by using frequency distribution,principal component analysis(PCA),student t test,and regression technique.Results:RCS and HCS were recorded minimum(0.005,0.65)during non-pulse event and maximum(0.36,1.79)during pulse event respectively.With this approach,multi-directional temporal status of lands identified that were grouped into lower(7),moderate(14),high(12),and very high(3)quality lands.Conclusion:This integrated study suggested that in arid regions,although rainfall triggers plant community composition,however,sole utilization of this parameter is unable to portray the true status of lands,and other physical(soil)and biotic(livestock and other anthropogenic)parameters are equally important and influential during other events.
基金National Nature Sciences Foundation of China,No.41571504National Key Technology Research and Development Program,No.2013BAC03B00
文摘The first-stage of an ecological conservation and restoration project in the Three-River Source Region(TRSR), China, has been in progress for eight years. However, because the ecological effects of this project remain unknown, decision making for future project implementation is hindered. Thus, in this study, we developed an index system to evaluate the effects of the ecological restoration project, by integrating field observations, remote sensing, and process-based models. Effects were assessed using trend analyses of ecosystem structures and services. Results showed positive trends in the TRSR since the beginning of the project, but not yet a return to the optima of the 1970 s. Specifically, while continued degradation in grassland has been initially contained, results are still far from the desired objective, ‘grassland coverage increasing by an average of 20%–40%'. In contrast, wetlands and water bodies have generally been restored, while the water conservation and water supply capacity of watersheds have increased. Indeed, the volume of water conservation achieved in the project meets the objective of a 1.32 billion m^3 increase. The effects of ecological restoration inside project regions was more significant than outside, and, in addition to climate change projects, we concluded that the implementation of ecological conservation and restoration projects has substantially contributed to vegetation restoration. Nevertheless, the degradation of grasslands has not been fundamentally reversed, and to date the project has not prevented increasing soil erosion. In sum, the effects and challenges of this first-stage project highlight the necessity of continuous and long-term ecosystem conservation efforts in this region.