Rice-duck (RD) and rice-fish (RF) ecological systems are major complex planting and breeding models of rice paddy fields in southern China. Studying the methane (CH4) and nitrous oxide (N2O) emissions and thei...Rice-duck (RD) and rice-fish (RF) ecological systems are major complex planting and breeding models of rice paddy fields in southern China. Studying the methane (CH4) and nitrous oxide (N2O) emissions and their economic value from these two ecosystems can provide theoretical and practical basis for further development and utilization of these classical agricultural techniques. CH4 and N2O emissions from RD and RF ecological systems were measured in situ by using static chambers technique. Using global warming potentials (GWPs), we assessed the greenhouse effect of CH4 and N2O and their economic value. Results showed that the peaks of CH4 emission fluxes from RD and RF appeared at full tillering stage and at heading stage, and the average emission fluxes were significantly (P〈 0.05) lower than that from CK. N2O fluxes remained low when the field is flooded and high after draining the water. Compared with CK, the total amount of N2O emissions was significantly (P〈0.05) higher and slightly lower than those from RD and RF, respectively. In 2006 and 2007, the total greenhouse effect of CH4 and N20 from RD and RF were 4 728.3 and 4 611 kg CO2 ha^-1, 4 545 and 4 754.3 kg CO2 ha^-1, respectively. The costs of greenhouse effect were 970.89 and 946.81 RMB yuan ha^-1, and 933.25 and 976.23 RMB yuan ha^-1, respectively, which were significant lower than those from CK (5 997.6 and 5 391.5 RMB yuan ha^-1). Except for the environment cost of CH4 and N2O, the economic benefits from RD and RF were 2 210.64 and 4 881.92 RMB yuan ha^-1; 3 798.37 and 5 310.64 RMB yuan ha^-1, respectively, higher than those from CK. Therefore, RD and RF complex ecological planting and breeding models can effectively decrease and control CH4 and N2O emissions, and they are two of the effective strategies to reduce greenhouse gases from rice paddy fields and contribute in alleviating global warming. Thus, their adoption is important to the environment together with their economy benefits.展开更多
Residues of 14C- carbofuran were studied in model late- rice ecosystem (LRE) and early- rice ecosystem (ERE). The treatment consisted of two rates of the pesticide (1x) and 2.5x). At day 56 after application, 7.3% (1x...Residues of 14C- carbofuran were studied in model late- rice ecosystem (LRE) and early- rice ecosystem (ERE). The treatment consisted of two rates of the pesticide (1x) and 2.5x). At day 56 after application, 7.3% (1x) and 2.9% (2.5x) of the pesticide and its degradative products remained in the water of the LRE, and 1.8% (1x) and 2.4% (2.5x) of them remained in the water of the ERE. At harvest, 37.5% (LRE) and 24.0% (ERE) of the pesticide applied were detected in the upper layer of the soil; and 40.6% (LRE) and 26.9% (ERE) remained in the lower layer of the soil. The residues in the rice plants increased at the first stage, reached maximum levels during day 14 to 28 after application, and decreased thereafter. At harvest, residues in the stems and leaves in the two treatments (1x and 2.5x) were 3.91μ g/g and 7.78μ g/g (LRE) and 5.04 μg/g and 17.29 μ g/g (ERE) respectively. Residues in the ears were about 1/8 to 1/12 of that in the other parts of the plants. The pesticide residues in fish bodies in both experiments were also determined.展开更多
The fate of fenitrothion in rice- fish ecosystem was studied using C- fenitrothion (14C- F) labelled at methoxyl and two application rates. The fenitrothion in water disappeared quickly, only 8 and 11 ppb in two treat...The fate of fenitrothion in rice- fish ecosystem was studied using C- fenitrothion (14C- F) labelled at methoxyl and two application rates. The fenitrothion in water disappeared quickly, only 8 and 11 ppb in two treatments at harvest were detected respectively. Most of 14C-F in soil existed in upper layer and that in plants appeared in shoots. The extractable residues in cargo rice were 0.36 and 0.58 ppm in two treatments respectively. 14C- residues (14C- R) were concentrated in bones, next viscera, meat and scales. Total 14C-R in meat were 0.92 and 1.77 ppm at harvest. Comparing two treatments, the residue dynamics of fenitrothion in water, soil, plants and fish were similar. 14C- R in water and soil after harvest affected the rice- fish ecosystem in the next season. However, the extractable 14C- R in cargo rice, soil and water were very low. Fenitrothion 14C- fenitrothion Rice- fish Model展开更多
Besides crops, agriculture supplies all three major categories of ecosystem services (ES). However, agriculture also supplies an array of ecosystem dis-services (EDS) that may harm other ecosystems. The flows of E...Besides crops, agriculture supplies all three major categories of ecosystem services (ES). However, agriculture also supplies an array of ecosystem dis-services (EDS) that may harm other ecosystems. The flows of ES and EDS are directly dependent on the management of agricultural ecosystems. The traditional method of Chinese agriculture, which supports sustainable agriculture, has been proven to increase ES and reduce EDS. However, there is a lack of a detailed understanding of the ES and EDS associated with traditional agriculture, and also of differences between traditional and modem agriculture. In this study, an investigation was conducted on the ecosystem services (ES) and ecosystem dis-services (EDS) of traditional and modem agriculture in Congjiang County, Guizhou Province, China. Afterwards, the economic values of ES and EDS were quantified experimentally and calculated based on the market price. The results show that: the net economic value of traditional rice-fish agriculture was 3.31 x 104 CNY.haI (6.83 CNY = 1 USD as of July, 2009) and that of rice monoculture was 1.99 x 104 CNY.ha ~. Significant differences existed between traditional rice-fish and rice monoculture fields for their economic values of some ES or EDS. A benefit and cost analysis (BCA) model was used to adjust the conflict between the economic income and environmental loss from traditional and modem agricul- ture. The BCA model not only calculates the net income but also monetizes the EDS of the agricultural systems. The results showed that the net income of rice-fish agriculture was 1.94x 104CNY.ha-1 higher than that of rice monoculture. However, the benefit to cost ratio (BCR) of rice-fish agriculture was lower than that of rice monoculture, indicating that the traditional agricultural model was not the most optimized choice for farmers. The value of the rice-fish agriculture was much higher than that of the rice monoculture. Thus, when considering the benefits that rice-fish agriculture contributes to the large- scale society, these agricultural methods needs to be utilized. Furthermore, the labor opportunity costs were calculated and the comprehensive value of rice mono- culture was negative. Finally, the compensation standard was calculated based on the comprehensive benefit analysis. The lowest level was 1.09×103 CNY.ha-1, and the highest level was 1.21 × 104 CNY.ha-1.展开更多
基金supported by Important National Science&Technoligy Specific Projects, China (2004BA520A02)
文摘Rice-duck (RD) and rice-fish (RF) ecological systems are major complex planting and breeding models of rice paddy fields in southern China. Studying the methane (CH4) and nitrous oxide (N2O) emissions and their economic value from these two ecosystems can provide theoretical and practical basis for further development and utilization of these classical agricultural techniques. CH4 and N2O emissions from RD and RF ecological systems were measured in situ by using static chambers technique. Using global warming potentials (GWPs), we assessed the greenhouse effect of CH4 and N2O and their economic value. Results showed that the peaks of CH4 emission fluxes from RD and RF appeared at full tillering stage and at heading stage, and the average emission fluxes were significantly (P〈 0.05) lower than that from CK. N2O fluxes remained low when the field is flooded and high after draining the water. Compared with CK, the total amount of N2O emissions was significantly (P〈0.05) higher and slightly lower than those from RD and RF, respectively. In 2006 and 2007, the total greenhouse effect of CH4 and N20 from RD and RF were 4 728.3 and 4 611 kg CO2 ha^-1, 4 545 and 4 754.3 kg CO2 ha^-1, respectively. The costs of greenhouse effect were 970.89 and 946.81 RMB yuan ha^-1, and 933.25 and 976.23 RMB yuan ha^-1, respectively, which were significant lower than those from CK (5 997.6 and 5 391.5 RMB yuan ha^-1). Except for the environment cost of CH4 and N2O, the economic benefits from RD and RF were 2 210.64 and 4 881.92 RMB yuan ha^-1; 3 798.37 and 5 310.64 RMB yuan ha^-1, respectively, higher than those from CK. Therefore, RD and RF complex ecological planting and breeding models can effectively decrease and control CH4 and N2O emissions, and they are two of the effective strategies to reduce greenhouse gases from rice paddy fields and contribute in alleviating global warming. Thus, their adoption is important to the environment together with their economy benefits.
基金Research carried out with the support of IAEA under Research Contract No. 4233/RB
文摘Residues of 14C- carbofuran were studied in model late- rice ecosystem (LRE) and early- rice ecosystem (ERE). The treatment consisted of two rates of the pesticide (1x) and 2.5x). At day 56 after application, 7.3% (1x) and 2.9% (2.5x) of the pesticide and its degradative products remained in the water of the LRE, and 1.8% (1x) and 2.4% (2.5x) of them remained in the water of the ERE. At harvest, 37.5% (LRE) and 24.0% (ERE) of the pesticide applied were detected in the upper layer of the soil; and 40.6% (LRE) and 26.9% (ERE) remained in the lower layer of the soil. The residues in the rice plants increased at the first stage, reached maximum levels during day 14 to 28 after application, and decreased thereafter. At harvest, residues in the stems and leaves in the two treatments (1x and 2.5x) were 3.91μ g/g and 7.78μ g/g (LRE) and 5.04 μg/g and 17.29 μ g/g (ERE) respectively. Residues in the ears were about 1/8 to 1/12 of that in the other parts of the plants. The pesticide residues in fish bodies in both experiments were also determined.
文摘The fate of fenitrothion in rice- fish ecosystem was studied using C- fenitrothion (14C- F) labelled at methoxyl and two application rates. The fenitrothion in water disappeared quickly, only 8 and 11 ppb in two treatments at harvest were detected respectively. Most of 14C-F in soil existed in upper layer and that in plants appeared in shoots. The extractable residues in cargo rice were 0.36 and 0.58 ppm in two treatments respectively. 14C- residues (14C- R) were concentrated in bones, next viscera, meat and scales. Total 14C-R in meat were 0.92 and 1.77 ppm at harvest. Comparing two treatments, the residue dynamics of fenitrothion in water, soil, plants and fish were similar. 14C- R in water and soil after harvest affected the rice- fish ecosystem in the next season. However, the extractable 14C- R in cargo rice, soil and water were very low. Fenitrothion 14C- fenitrothion Rice- fish Model
文摘Besides crops, agriculture supplies all three major categories of ecosystem services (ES). However, agriculture also supplies an array of ecosystem dis-services (EDS) that may harm other ecosystems. The flows of ES and EDS are directly dependent on the management of agricultural ecosystems. The traditional method of Chinese agriculture, which supports sustainable agriculture, has been proven to increase ES and reduce EDS. However, there is a lack of a detailed understanding of the ES and EDS associated with traditional agriculture, and also of differences between traditional and modem agriculture. In this study, an investigation was conducted on the ecosystem services (ES) and ecosystem dis-services (EDS) of traditional and modem agriculture in Congjiang County, Guizhou Province, China. Afterwards, the economic values of ES and EDS were quantified experimentally and calculated based on the market price. The results show that: the net economic value of traditional rice-fish agriculture was 3.31 x 104 CNY.haI (6.83 CNY = 1 USD as of July, 2009) and that of rice monoculture was 1.99 x 104 CNY.ha ~. Significant differences existed between traditional rice-fish and rice monoculture fields for their economic values of some ES or EDS. A benefit and cost analysis (BCA) model was used to adjust the conflict between the economic income and environmental loss from traditional and modem agricul- ture. The BCA model not only calculates the net income but also monetizes the EDS of the agricultural systems. The results showed that the net income of rice-fish agriculture was 1.94x 104CNY.ha-1 higher than that of rice monoculture. However, the benefit to cost ratio (BCR) of rice-fish agriculture was lower than that of rice monoculture, indicating that the traditional agricultural model was not the most optimized choice for farmers. The value of the rice-fish agriculture was much higher than that of the rice monoculture. Thus, when considering the benefits that rice-fish agriculture contributes to the large- scale society, these agricultural methods needs to be utilized. Furthermore, the labor opportunity costs were calculated and the comprehensive value of rice mono- culture was negative. Finally, the compensation standard was calculated based on the comprehensive benefit analysis. The lowest level was 1.09×103 CNY.ha-1, and the highest level was 1.21 × 104 CNY.ha-1.