Insulin resistance is the pathophysiological basis of many diseases.Overcoming early insulin resistance highly significant in prevention diabetes,non-alcoholic fatty liver,and atherosclerosis.The present study aimed a...Insulin resistance is the pathophysiological basis of many diseases.Overcoming early insulin resistance highly significant in prevention diabetes,non-alcoholic fatty liver,and atherosclerosis.The present study aimed at evaluating the therapeutic effects of baicalin on insulin resistance and skeletal muscle ectopic fat storage in high fat diet-induced mice,and exploring the potential molecular mechanisms.Insulin resistance in mice was induced with a high fat diet for 16 weeks.Animals were then treated with three different doses of baicalin(100,200,and 400 mg·kg^(-1)·d^(-1)for 14 weeks.Fasting blood glucose,fasting serum insulin,glucose tolerance test(GTT),insulin tolerance test(ITT),and skeletal muscle lipid deposition were measured.Additionally,the AMP-activated protein kinase/acetyl-CoA carboxylase and protein kinase B/Glycogen synthase kinase 3 beta pathways in skeletal muscle were further evaluated.Baicalin significantly reduced the levels of fasting blood glucose and fasting serum insulin and attenuated high fat diet induced glucose tolerance and insulin tolerance.Moreover,insulin resistance was significantly reversed.Pathological analysis revealed baicalin dose-dependently decreased the degree of the ectopic fat storage in skeletal muscle.The properties of baicalin were mediated,at least in part,by inhibition of the AMPK/ACC pathway,a key regulator of de novo lipogenesis and activation of the Akt/GSK-3β pathway,a key regulator of Glycogen synthesis.These data suggest that baicalin,at dose up to 400 mg·kg^(-1)·d^(-1),is safe and able to attenuate insulin resistance and skeletal muscle ectopic fat storage,through modulating the skeletal muscle AMPK/ACC pathway and Akt/GSK-3β pathway.展开更多
To determine the effects of plant-based meat analogues on the metabolic health and the possible mechanisms,mice were fed with a real pork diet(AP),a real beef diet(AB),a plant-based pork analogue diet(PP)and plant-bas...To determine the effects of plant-based meat analogues on the metabolic health and the possible mechanisms,mice were fed with a real pork diet(AP),a real beef diet(AB),a plant-based pork analogue diet(PP)and plant-based beef analogue diet(PB)for 68 days.Compared with real meat,the plant-based meat analogues increased food and energy intake,body weight,white fat and liver weight and caused adipocyte hypertrophy,hepatic lipid droplet accumulation,and inflammatory responses in mice.Metabolomics revealed that plantbased meat analogues altered the composition of serum metabolites,which regulated lipid metabolism homeostasis.The PB diet upregulated gene expression related to lipid synthesis,lipolysis and adipocyte differentiation while the PP diet upregulated expression of lipolysis-related genes but downregulated expression of adipocyte differentiation-related genes in white adipose tissue.Meanwhile,both PP and PB diets upregulated lipid influx-and synthesis-related genes but downregulated lipid oxidation-related genes in liver.The specific metabolite biomarkers may affect fat accumulation mainly by direct lipid metabolism pathways or indirect amino acid metabolism,protein digestion and absorption,bile secretion,aminoacyl-tRNA biosynthesis,neuroactive ligand-receptor interaction and ABC transporters pathways.These findings provide a new insight into understanding the differences in nutritional functions of meat and plant-based meat analogues.展开更多
Hepatic steatosis affects 20% to 30% of the general adult population in the western world. Currently, the technique of choice for determining hepatic fat deposition and the stage of fibrosis is liver biopsy. However, ...Hepatic steatosis affects 20% to 30% of the general adult population in the western world. Currently, the technique of choice for determining hepatic fat deposition and the stage of fibrosis is liver biopsy. However, it is an invasive procedure and its use is limited, particularly in children. It may also be subject to sampling error. Non-invasive techniques such as ultrasound, computerised tomography (CT), magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopy (1H MRS) can detect hepatic steatosis, but currently cannot distinguish between simple steatosis and steatohepatitis, or stage the degree of fibrosis accurately. Ultrasound is widely used to detect hepatic steatosis, but its sensitivity is reduced in the morbidly obese and also in those with small amounts of fatty infiltration. It has been used to grade hepatic fat content, but this is subjective. CT can detect hepatic steatosis, but exposes subjects to ionising radiation, thus limiting its use in longitudinal studies and in children. Recently, magnetic resonance (MR) techniques using chemical shift imaging have provided a quantitative assessment of the degree of hepatic fatty infiltration, which correlates well with liver biopsy results in the same patients. Similarly, in vivo 1H MRS is a fast, safe, non-invasive method forthe quantification of intrahepatocellular lipid (IHCL) levels. Both techniques will be useful tools in future longitudinal clinical studies, either in examining the natural history of conditions causing hepatic steatosis (e.g. non-alcoholic fatty liver disease), or in testing new treatments for these conditions.展开更多
基金supported by a grant provided by Southeast University(No.9224007044)
文摘Insulin resistance is the pathophysiological basis of many diseases.Overcoming early insulin resistance highly significant in prevention diabetes,non-alcoholic fatty liver,and atherosclerosis.The present study aimed at evaluating the therapeutic effects of baicalin on insulin resistance and skeletal muscle ectopic fat storage in high fat diet-induced mice,and exploring the potential molecular mechanisms.Insulin resistance in mice was induced with a high fat diet for 16 weeks.Animals were then treated with three different doses of baicalin(100,200,and 400 mg·kg^(-1)·d^(-1)for 14 weeks.Fasting blood glucose,fasting serum insulin,glucose tolerance test(GTT),insulin tolerance test(ITT),and skeletal muscle lipid deposition were measured.Additionally,the AMP-activated protein kinase/acetyl-CoA carboxylase and protein kinase B/Glycogen synthase kinase 3 beta pathways in skeletal muscle were further evaluated.Baicalin significantly reduced the levels of fasting blood glucose and fasting serum insulin and attenuated high fat diet induced glucose tolerance and insulin tolerance.Moreover,insulin resistance was significantly reversed.Pathological analysis revealed baicalin dose-dependently decreased the degree of the ectopic fat storage in skeletal muscle.The properties of baicalin were mediated,at least in part,by inhibition of the AMPK/ACC pathway,a key regulator of de novo lipogenesis and activation of the Akt/GSK-3β pathway,a key regulator of Glycogen synthesis.These data suggest that baicalin,at dose up to 400 mg·kg^(-1)·d^(-1),is safe and able to attenuate insulin resistance and skeletal muscle ectopic fat storage,through modulating the skeletal muscle AMPK/ACC pathway and Akt/GSK-3β pathway.
基金supported by Jiangsu Innovative Group of Meat Nutrition,Health and Biotechnologythe Postgraduate Research&Practice Innovation Program of Jiangsu Province(grant number:KYCX21_0575)。
文摘To determine the effects of plant-based meat analogues on the metabolic health and the possible mechanisms,mice were fed with a real pork diet(AP),a real beef diet(AB),a plant-based pork analogue diet(PP)and plant-based beef analogue diet(PB)for 68 days.Compared with real meat,the plant-based meat analogues increased food and energy intake,body weight,white fat and liver weight and caused adipocyte hypertrophy,hepatic lipid droplet accumulation,and inflammatory responses in mice.Metabolomics revealed that plantbased meat analogues altered the composition of serum metabolites,which regulated lipid metabolism homeostasis.The PB diet upregulated gene expression related to lipid synthesis,lipolysis and adipocyte differentiation while the PP diet upregulated expression of lipolysis-related genes but downregulated expression of adipocyte differentiation-related genes in white adipose tissue.Meanwhile,both PP and PB diets upregulated lipid influx-and synthesis-related genes but downregulated lipid oxidation-related genes in liver.The specific metabolite biomarkers may affect fat accumulation mainly by direct lipid metabolism pathways or indirect amino acid metabolism,protein digestion and absorption,bile secretion,aminoacyl-tRNA biosynthesis,neuroactive ligand-receptor interaction and ABC transporters pathways.These findings provide a new insight into understanding the differences in nutritional functions of meat and plant-based meat analogues.
基金Grants from the Novo Nordisk UK Research Foundation (supporting S.R.M)Pfizer Global Research and Development (Sandwich, UK)the British Medical Research Council and the United Kingdom Department of Health Research and Development Initiative
文摘Hepatic steatosis affects 20% to 30% of the general adult population in the western world. Currently, the technique of choice for determining hepatic fat deposition and the stage of fibrosis is liver biopsy. However, it is an invasive procedure and its use is limited, particularly in children. It may also be subject to sampling error. Non-invasive techniques such as ultrasound, computerised tomography (CT), magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopy (1H MRS) can detect hepatic steatosis, but currently cannot distinguish between simple steatosis and steatohepatitis, or stage the degree of fibrosis accurately. Ultrasound is widely used to detect hepatic steatosis, but its sensitivity is reduced in the morbidly obese and also in those with small amounts of fatty infiltration. It has been used to grade hepatic fat content, but this is subjective. CT can detect hepatic steatosis, but exposes subjects to ionising radiation, thus limiting its use in longitudinal studies and in children. Recently, magnetic resonance (MR) techniques using chemical shift imaging have provided a quantitative assessment of the degree of hepatic fatty infiltration, which correlates well with liver biopsy results in the same patients. Similarly, in vivo 1H MRS is a fast, safe, non-invasive method forthe quantification of intrahepatocellular lipid (IHCL) levels. Both techniques will be useful tools in future longitudinal clinical studies, either in examining the natural history of conditions causing hepatic steatosis (e.g. non-alcoholic fatty liver disease), or in testing new treatments for these conditions.