Eddy current (EC) distribution induced by EC sensors determines the interaction between the defectin the testing specimen and the EC, so quantitatively evaluating EC distribution is crucial to the design of ECsensors....Eddy current (EC) distribution induced by EC sensors determines the interaction between the defectin the testing specimen and the EC, so quantitatively evaluating EC distribution is crucial to the design of ECsensors. In this study, two indices based on the information entropy are proposed to evaluate the EC energyallocated in different directions. The EC vectors induced by a rotational field EC sensor varying in the timedomain are evaluated by the proposed methods. Then, the evaluating results are analyzed by the principle ofEC testing. It can be concluded that the two indices can effectively quantitatively evaluate the EC distributionsvarying in the time domain and are used to optimize the parameters of the rotational EC sensors.展开更多
基金Foundation item:the National Natural Science Foundation of China(No.51807086)the Young Doctoral Fund of Education Department of Gansu Province(No.2021QB-047)the Hongliu Youth Fund of Lanzhou University of Technology(No.07/062003)。
文摘Eddy current (EC) distribution induced by EC sensors determines the interaction between the defectin the testing specimen and the EC, so quantitatively evaluating EC distribution is crucial to the design of ECsensors. In this study, two indices based on the information entropy are proposed to evaluate the EC energyallocated in different directions. The EC vectors induced by a rotational field EC sensor varying in the timedomain are evaluated by the proposed methods. Then, the evaluating results are analyzed by the principle ofEC testing. It can be concluded that the two indices can effectively quantitatively evaluate the EC distributionsvarying in the time domain and are used to optimize the parameters of the rotational EC sensors.