The reliability of the eddy current testing (ECT) in flaw detection is quantitatively evaluated by theprobability of detection (POD). Precise and efficient modeling of POD gives direction for the implement of ECTon si...The reliability of the eddy current testing (ECT) in flaw detection is quantitatively evaluated by theprobability of detection (POD). Precise and efficient modeling of POD gives direction for the implement of ECTon sites to avoid false or missing flaw detection. Traditional POD analysis focuses on single uncertain factor orsingle response signal with limited credibility in engineering. This paper considers multiple response signals andmultiple flaw parameters to perform POD. The flaw length, the flaw depth, the coil impedance, and the magneticflux density are comprehensively studied under various lift-off distances. A finite element model (FEM) of ECT isestablished and verified with experiments to obtain sufficient simulation data for discrete POD modeling. Thecontinuous POD function is then fitted based on the discrete values to show the superiority of integrating multiplefactors. A comparison with conventional POD analysis further demonstrates the higher reliability of ECT flawdetection considering multiple flaw parameters and multiple response signals, especially for small flaws.展开更多
Eddy current testing is a nondestructive testing method, which is used to detect discontinuities and defects in conductive materials. Using this technique, two different types of artificial defects in a railhead were ...Eddy current testing is a nondestructive testing method, which is used to detect discontinuities and defects in conductive materials. Using this technique, two different types of artificial defects in a railhead were evaluated in order to analyze the relationship between different types of defects and eddy current signals, and to obtain data on the size of the rail surface defects and crack location. The actually used rail sample was also studied. Surface cracks and defects were clearly observed as amplitude and phase changes of detected signals. This study succeeds in quantitatively analyzing and discriminating the damage types.展开更多
CFRP (carbon fiber reinforced plastic) is used extensively in aircraft and spacecraft structures, because of its excellent mechanical properties. Ultrasonic testing, which is used as a non-destructive testing techni...CFRP (carbon fiber reinforced plastic) is used extensively in aircraft and spacecraft structures, because of its excellent mechanical properties. Ultrasonic testing, which is used as a non-destructive testing technique for CFRP, requires a contact medium. In contrast, eddy current testing does not require a contact medium, and when used for CFRP testing it has advantages not available with other techniques. CFRP is a laminate, with each layer being anisotropically conductive, and the distribution of the induced eddy current is yet to be determined. Here, to determine the eddy current distribution in the detection of flaws in cross-ply CFRP (0°/90°) by using a cross-point probe, we performed an FEM (finite element method) analysis of electromagnetic fields. We investigated the nature of the flaw signals and the differences in eddy current distributions between materials with and without flaws.展开更多
There are several elements that affect on the integrity of steam generator tubes. One of the elements is loose parts located on outside of the tubes. It causes erosion which is possible to lead fatal defect like crack...There are several elements that affect on the integrity of steam generator tubes. One of the elements is loose parts located on outside of the tubes. It causes erosion which is possible to lead fatal defect like crack on the outside surface of the tubes. In this study, artificial loose parts on Inconel 690 tube are demonstrated and eddy current testing data of the region is acquired using rotating probe. Ferromagnetic and nonmagnetic foreign materials were used to demonstrate artificial loose parts. Eddy current channel of 100 KHz frequency shows definite signals of those foreign materials but stainless steel was not clearly detected. This result can be explained based on the electrical conductivity of the materials and it can be confirmed with lissajous window and C-scan. In addition, no indication was detected when the distance of the gap between the foreign materials and the tube is increased to more than 3 mm under this test condition. Based on these experimental inspections, we were able to find suitable methods for analyzing the signals obtained under various conditions that could occur when conducting steam generator eddy current test in NPP.展开更多
In eddy current testing, the law of attenuation of eddy current(EC) is of great concern. In conductive half space under the excitation of uniform magnetic field, the EC density decreases exponentially in the depth dir...In eddy current testing, the law of attenuation of eddy current(EC) is of great concern. In conductive half space under the excitation of uniform magnetic field, the EC density decreases exponentially in the depth direction. However, in conductor with finite thickness tested by coil, the distribution of EC in the depth direction is more complicated. This paper studies the characteristics of EC attenuation in metallic plate of finite thickness. Simulation results show that there is an EC reflection at the bottom of plate, which changes the law of EC attenuation. A new concept, namely the equivalent attenuation coefficient, is proposed to quantify the speed of EC attenuation. The characteristics of EC attenuation are utilized to explain the nonmonotonic relation between coil voltage and plate thickness. Procedure of selecting frequency is discussed. Thereafter, measurement of plate thickness is carried out and accurate result is obtained.展开更多
A flexible or planar eddy current probe with a differential structure can suppress the lift-off noise during the inspection of defects.However,the extent of the lift-off effect on differential probes,including differe...A flexible or planar eddy current probe with a differential structure can suppress the lift-off noise during the inspection of defects.However,the extent of the lift-off effect on differential probes,including different coil structures,varies.In this study,two planar eddy current probes with differential pickup structures and the same size,Koch and circular probes,were used to compare lift-off effects.The eddy current distributions of the probes perturbed by 0°and 90°cracks were obtained by finite element analysis.The analysis results show that the 90°crack can impede the eddy current induced by the Koch probe even further at relatively low lift-off distance.The peak-to-peak values of the signal output from the two probes were compared at different lift-off distances using finite element analysis and experimental methods.In addition,the effects of different frequencies on the lift-off were studied experimentally.The results show that the signal peak-to-peak value of the Koch probe for the inspection of cracks in 90°orientation is larger than that of the circular probe when the lift-off distance is smaller than 1.2 mm.In addition,the influence of the lift-off distance on the peak-to-peak signal value of the two probes was studied via normalization.This indicates that the influence becomes more evident with an increase in excitation frequency.This research discloses the lift-off effect of differential planar eddy current probes with different coil shapes and proves the detection merit of the Koch probe for 90°cracks at low lift-off distances.展开更多
New materials and manufacturing technologies require applicable non-destructive techniques for quality assurance so as to achieve better performance.This study comprehensively investigated the effect of influencing fa...New materials and manufacturing technologies require applicable non-destructive techniques for quality assurance so as to achieve better performance.This study comprehensively investigated the effect of influencing factors includ-ing excitation frequency,lift-off distance,defect depth and size,residual heat,and surface roughness on the defect EC signals of an Inconel 738LC alloy produced by selective laser melting(SLM).The experimental investigations recorded the impedance amplitude and phase angle of EC signals for each defect to explore the feasibility of detecting sub-surface defects by merely analyzing these two key indicators.Overall,this study revealed preliminary qualitative and roughly quantitative relationships between influencing factors and corresponding EC signals,which provided a prac-tical reference on how to quantitively inspect subsurface defects using eddy current testing(ECT)on SLMed parts,and also made solid progress toward on-line ECT in additive/subtractive hybrid manufacturing(ASHM)for fabricating SLMed parts with enhanced quality and better performance.展开更多
This study utilized finite element simulation and experimental methods to investigate the evolution of crack detection performanceof a flexible differential fractal Koch eddy current probe at different excitation freq...This study utilized finite element simulation and experimental methods to investigate the evolution of crack detection performanceof a flexible differential fractal Koch eddy current probe at different excitation frequencies as the lift-off distance increases.As the lift-off distanceincreased,the distribution shape of induced eddy currents changed,leading to reduced similarity in the shape of the excitation coil and an expandeddistribution range of induced eddy currents,ultimately resulting in weakened output signal strength.The experimental results showed that forexcitation frequencies of 10 kHz,20 kHz,50 kHz,100 kHz,200 kHz,500 kHz,and1000 kHz,the maximum lift distances of the real partof the output signal when cracks were detected were 5.0 mm,7.0 mm,8.0 mm,8.0 mm,8.0 mm,6.5 mm,and 4.0 mm,respectively.Theimaginary parts were 6.5 mm,6.5 mm,7.5 mm,5.5 mm,8.0 mm,6.5 mm,and 6.5 mm,respectively.展开更多
Luquire et al. ' s impedance change model of a rectangular cross section probe coil above a structure with an arbitrary number of parallel layers was used to study the principle of measuring thicknesses of multi-l...Luquire et al. ' s impedance change model of a rectangular cross section probe coil above a structure with an arbitrary number of parallel layers was used to study the principle of measuring thicknesses of multi-layered structures in terms of eddy current testing voltage measurements. An experimental system for multi-layered thickness measurement was developed and several fitting models to formulate the relationships between detected impedance/voltage measurements and thickness are put forward using least square method. The determination of multi-layered thicknesses was investigated after inversing the voltage outputs of the detecting system. The best fitting and inversion models are presented.展开更多
In this paper the carbon distribution in the carburized layer of 20CrMnTi steel was studied. The relationship between the depth of a carburized layer and the surface carbon distribution was established. Eddy current t...In this paper the carbon distribution in the carburized layer of 20CrMnTi steel was studied. The relationship between the depth of a carburized layer and the surface carbon distribution was established. Eddy current testing system of the case depth of this carburized steel was built by using ANSYS software as second development platform.展开更多
This paper proposed a high-sensitivity phase imaging eddy current magneto-optical (PI-ECMO) system for carbon fiber reinforced polymer (CFRP) defect detection. In contrast to other eddy current-based detection systems...This paper proposed a high-sensitivity phase imaging eddy current magneto-optical (PI-ECMO) system for carbon fiber reinforced polymer (CFRP) defect detection. In contrast to other eddy current-based detection systems, the proposed system employs a fixed position excitation coil while enabling the detection point to move within the detection region. This configuration effectively mitigates the interference caused by the lift-off effect, which is commonly observed in systems with moving excitation coils. Correspondingly, the relationship between the defect characteristics (orientation and position) and the surface vertical magnetic field distribution (amplitude and phase) is studied in detail by theoretical analysis and numerical simulations. Experiments conducted on woven CFRP plates demonstrate that the designed PI-ECMO system is capable of effectively detecting both surface and internal cracks, as well as impact defects. The excitation current is significantly reduced compared with traditional eddy current magneto-optical (ECMO) systems.展开更多
Due to the electrical anisotropy of carbon fiber reinforced polymer(CFRP),this paper presents a method to inverse the anisotropic conductivity of unidirectional CFRP laminate using eddy current testing(ECT). The relat...Due to the electrical anisotropy of carbon fiber reinforced polymer(CFRP),this paper presents a method to inverse the anisotropic conductivity of unidirectional CFRP laminate using eddy current testing(ECT). The relationship between the conductivity and probe signal of ECT is studied by means of numerical simulation. Finally,the accuracy of inversion result is improved by optimizing the initial conductivity by use of experimental data.展开更多
It is known that eddy current effect has a great influence on magnetic flux leakage testing(MFL).Usually,contacttype encoder wheels are used to measure MFL testing speed to evaluate the effect and further compensate t...It is known that eddy current effect has a great influence on magnetic flux leakage testing(MFL).Usually,contacttype encoder wheels are used to measure MFL testing speed to evaluate the effect and further compensate testing signals.This speed measurement method is complicated,and inevitable abrasion and occasional slippage will reduce the measurement accuracy.In order to solve this problem,based on eddy current effect due to the relative movement,a speed measurement method is proposed,which is contactless and simple.In the high-speed MFL testing,eddy current induced in the specimen will cause an obvious modification to the applied field.This modified field,which is measured by Hall sensor,can be utilized to reflect the moving speed.Firstly,the measurement principle is illustrated based on Faraday’s law.Then,dynamic finite element simulations are conducted to investigate the modified magnetic field distribution.Finally,laboratory experiments are performed to validate the feasibility of the proposed method.The results show that Bmz(r1)and Bmx(r2)have a linear relation with moving speed,which could be used as an alternative measurement parameter.展开更多
The paper addresses the first eddy current benchmark problem proposed by the World Federation of Nondestructive Evaluation Centers (WFNDEC). The problem simulates the eddy current response to the presence of an axisym...The paper addresses the first eddy current benchmark problem proposed by the World Federation of Nondestructive Evaluation Centers (WFNDEC). The problem simulates the eddy current response to the presence of an axisymmetric circumferential defect in an Inconel-600 tube. All simulations employ the axisymmetric code of the electromagnetic field simulator Finite Element Method Magnetics. For three different frequencies of excitation, it is explained how the displacement of the detecting coil inside the tube leads to a variation in the impedance of the eddy current coil. Variations of the resistive and inductive components of the impedance with distance from the defect region are used to build the impedance trajectory for each frequency of analysis.展开更多
Shaker screen is one of important equipments in the industry of oil, metallurgy, coal and timbering. The movement locus of shaker screen affects the capacity and efficiency of shaker screen to split the solid particle...Shaker screen is one of important equipments in the industry of oil, metallurgy, coal and timbering. The movement locus of shaker screen affects the capacity and efficiency of shaker screen to split the solid particle from crude ore directly. To test movement of shaker locus, two eddy current transducers are employed. A discussion of the usage of these eddy current transducer to test and acceleration sensors will be made. The experiment results from a real elliptic shaker screen have good agree with the design requirements.展开更多
The eddy current pulsed thermography(ECPT)technique is a research focus in the non-destructive testing(NDT)area for defect inspection.Defect feature extraction for defect information analysis in ECPT is limited by ima...The eddy current pulsed thermography(ECPT)technique is a research focus in the non-destructive testing(NDT)area for defect inspection.Defect feature extraction for defect information analysis in ECPT is limited by image contrast,heat diffusion,background interference,etc.In this paper,a defect feature extraction approach in ECPT has been proposed to improve the quality of defect features,which is based on image partition,local sparse component evaluation,and feature fusion.This method can extract complete defect features by enhancing the defect area and removing background interference,such as noises and heating coil.Two typical steel specimens are utilized to testify the validity of the proposed approach.Compared with other three common feature extraction algorithms in ECPT,the proposed method can reserve more complete defect features and suppress more background interference.展开更多
Eddy-current (EC) testing is an effective electromagnetic non-destructive testing (NDT) technique.Planar eddy-current sensor arrays have several advantages such as good coherence,fast response speed,and high sensitivi...Eddy-current (EC) testing is an effective electromagnetic non-destructive testing (NDT) technique.Planar eddy-current sensor arrays have several advantages such as good coherence,fast response speed,and high sensitivity,which can be used for micro-damage inspection of crucial parts in mechanical equipments and aerospace aviation.The main purpose of this research is to detect the defect in a metallic material surface and identify the length of a crack using planar eddy-current sensor arrays in different directions.The principle and characteristics of planar eddy-current sensor arrays are introduced,and a crack length quantification algorithm in different directions is investigated.A damage quantitative detection system is established based on a field programmable gate array and ARM processor.The system is utilized to inspect the micro defect in a metallic material,which is carved to micro crack with size of 7mm(length)×0.1mm(width)×1mm(depth).The experimental data show that the sensor arrays can be used for the length measurement repeatedly,and that the uncertainty of the length measurement is below ±0.2mm.展开更多
基金supported by the Key Research and Development Project of Zhejiang Province(Grant No.2023C01248,2023C01069)and the National Natural Science Foundation of China(Grant No.52375135,52305137).
文摘The reliability of the eddy current testing (ECT) in flaw detection is quantitatively evaluated by theprobability of detection (POD). Precise and efficient modeling of POD gives direction for the implement of ECTon sites to avoid false or missing flaw detection. Traditional POD analysis focuses on single uncertain factor orsingle response signal with limited credibility in engineering. This paper considers multiple response signals andmultiple flaw parameters to perform POD. The flaw length, the flaw depth, the coil impedance, and the magneticflux density are comprehensively studied under various lift-off distances. A finite element model (FEM) of ECT isestablished and verified with experiments to obtain sufficient simulation data for discrete POD modeling. Thecontinuous POD function is then fitted based on the discrete values to show the superiority of integrating multiplefactors. A comparison with conventional POD analysis further demonstrates the higher reliability of ECT flawdetection considering multiple flaw parameters and multiple response signals, especially for small flaws.
文摘Eddy current testing is a nondestructive testing method, which is used to detect discontinuities and defects in conductive materials. Using this technique, two different types of artificial defects in a railhead were evaluated in order to analyze the relationship between different types of defects and eddy current signals, and to obtain data on the size of the rail surface defects and crack location. The actually used rail sample was also studied. Surface cracks and defects were clearly observed as amplitude and phase changes of detected signals. This study succeeds in quantitatively analyzing and discriminating the damage types.
文摘CFRP (carbon fiber reinforced plastic) is used extensively in aircraft and spacecraft structures, because of its excellent mechanical properties. Ultrasonic testing, which is used as a non-destructive testing technique for CFRP, requires a contact medium. In contrast, eddy current testing does not require a contact medium, and when used for CFRP testing it has advantages not available with other techniques. CFRP is a laminate, with each layer being anisotropically conductive, and the distribution of the induced eddy current is yet to be determined. Here, to determine the eddy current distribution in the detection of flaws in cross-ply CFRP (0°/90°) by using a cross-point probe, we performed an FEM (finite element method) analysis of electromagnetic fields. We investigated the nature of the flaw signals and the differences in eddy current distributions between materials with and without flaws.
文摘There are several elements that affect on the integrity of steam generator tubes. One of the elements is loose parts located on outside of the tubes. It causes erosion which is possible to lead fatal defect like crack on the outside surface of the tubes. In this study, artificial loose parts on Inconel 690 tube are demonstrated and eddy current testing data of the region is acquired using rotating probe. Ferromagnetic and nonmagnetic foreign materials were used to demonstrate artificial loose parts. Eddy current channel of 100 KHz frequency shows definite signals of those foreign materials but stainless steel was not clearly detected. This result can be explained based on the electrical conductivity of the materials and it can be confirmed with lissajous window and C-scan. In addition, no indication was detected when the distance of the gap between the foreign materials and the tube is increased to more than 3 mm under this test condition. Based on these experimental inspections, we were able to find suitable methods for analyzing the signals obtained under various conditions that could occur when conducting steam generator eddy current test in NPP.
基金Supported by National Natural Science Foundation of China(Grant No.51277154)Xiamen Key Laboratory of Optoelectronic Transducer Technology+1 种基金Fujian Key Laboratory of Universities and Colleges for Transducer TechnologyInnovative Talents Program of Far East NDT New Technology&Application Forum
文摘In eddy current testing, the law of attenuation of eddy current(EC) is of great concern. In conductive half space under the excitation of uniform magnetic field, the EC density decreases exponentially in the depth direction. However, in conductor with finite thickness tested by coil, the distribution of EC in the depth direction is more complicated. This paper studies the characteristics of EC attenuation in metallic plate of finite thickness. Simulation results show that there is an EC reflection at the bottom of plate, which changes the law of EC attenuation. A new concept, namely the equivalent attenuation coefficient, is proposed to quantify the speed of EC attenuation. The characteristics of EC attenuation are utilized to explain the nonmonotonic relation between coil voltage and plate thickness. Procedure of selecting frequency is discussed. Thereafter, measurement of plate thickness is carried out and accurate result is obtained.
基金Supported by Gansu Provincial Natural Science Foundation of China(Grant No.22JR5RA229)National Natural Science Foundation of China(Grant Nos.51807086,12162021)Hongliu Youth Found of Lanzhou University of Technology and Gansu Provincial Outstanding Graduate Student Innovation Star of China(Grant No.2021CXZX-453).
文摘A flexible or planar eddy current probe with a differential structure can suppress the lift-off noise during the inspection of defects.However,the extent of the lift-off effect on differential probes,including different coil structures,varies.In this study,two planar eddy current probes with differential pickup structures and the same size,Koch and circular probes,were used to compare lift-off effects.The eddy current distributions of the probes perturbed by 0°and 90°cracks were obtained by finite element analysis.The analysis results show that the 90°crack can impede the eddy current induced by the Koch probe even further at relatively low lift-off distance.The peak-to-peak values of the signal output from the two probes were compared at different lift-off distances using finite element analysis and experimental methods.In addition,the effects of different frequencies on the lift-off were studied experimentally.The results show that the signal peak-to-peak value of the Koch probe for the inspection of cracks in 90°orientation is larger than that of the circular probe when the lift-off distance is smaller than 1.2 mm.In addition,the influence of the lift-off distance on the peak-to-peak signal value of the two probes was studied via normalization.This indicates that the influence becomes more evident with an increase in excitation frequency.This research discloses the lift-off effect of differential planar eddy current probes with different coil shapes and proves the detection merit of the Koch probe for 90°cracks at low lift-off distances.
基金Supported by Basic Research Project of Science and Technology Plan of Shenzhen(Grant No.JCYJ20170817111811303).
文摘New materials and manufacturing technologies require applicable non-destructive techniques for quality assurance so as to achieve better performance.This study comprehensively investigated the effect of influencing factors includ-ing excitation frequency,lift-off distance,defect depth and size,residual heat,and surface roughness on the defect EC signals of an Inconel 738LC alloy produced by selective laser melting(SLM).The experimental investigations recorded the impedance amplitude and phase angle of EC signals for each defect to explore the feasibility of detecting sub-surface defects by merely analyzing these two key indicators.Overall,this study revealed preliminary qualitative and roughly quantitative relationships between influencing factors and corresponding EC signals,which provided a prac-tical reference on how to quantitively inspect subsurface defects using eddy current testing(ECT)on SLMed parts,and also made solid progress toward on-line ECT in additive/subtractive hybrid manufacturing(ASHM)for fabricating SLMed parts with enhanced quality and better performance.
基金supported by the National Nature Science Foundation of China(Nos.62471206,52467002)。
文摘This study utilized finite element simulation and experimental methods to investigate the evolution of crack detection performanceof a flexible differential fractal Koch eddy current probe at different excitation frequencies as the lift-off distance increases.As the lift-off distanceincreased,the distribution shape of induced eddy currents changed,leading to reduced similarity in the shape of the excitation coil and an expandeddistribution range of induced eddy currents,ultimately resulting in weakened output signal strength.The experimental results showed that forexcitation frequencies of 10 kHz,20 kHz,50 kHz,100 kHz,200 kHz,500 kHz,and1000 kHz,the maximum lift distances of the real partof the output signal when cracks were detected were 5.0 mm,7.0 mm,8.0 mm,8.0 mm,8.0 mm,6.5 mm,and 4.0 mm,respectively.Theimaginary parts were 6.5 mm,6.5 mm,7.5 mm,5.5 mm,8.0 mm,6.5 mm,and 6.5 mm,respectively.
文摘Luquire et al. ' s impedance change model of a rectangular cross section probe coil above a structure with an arbitrary number of parallel layers was used to study the principle of measuring thicknesses of multi-layered structures in terms of eddy current testing voltage measurements. An experimental system for multi-layered thickness measurement was developed and several fitting models to formulate the relationships between detected impedance/voltage measurements and thickness are put forward using least square method. The determination of multi-layered thicknesses was investigated after inversing the voltage outputs of the detecting system. The best fitting and inversion models are presented.
文摘In this paper the carbon distribution in the carburized layer of 20CrMnTi steel was studied. The relationship between the depth of a carburized layer and the surface carbon distribution was established. Eddy current testing system of the case depth of this carburized steel was built by using ANSYS software as second development platform.
基金the National Natural Science Foundation of China under Grants No.U2030205,No.62003075,No.61903065,and No.62003074Sichuan Science and Technology Planning Project under Grant No.2022JDJQ0040.
文摘This paper proposed a high-sensitivity phase imaging eddy current magneto-optical (PI-ECMO) system for carbon fiber reinforced polymer (CFRP) defect detection. In contrast to other eddy current-based detection systems, the proposed system employs a fixed position excitation coil while enabling the detection point to move within the detection region. This configuration effectively mitigates the interference caused by the lift-off effect, which is commonly observed in systems with moving excitation coils. Correspondingly, the relationship between the defect characteristics (orientation and position) and the surface vertical magnetic field distribution (amplitude and phase) is studied in detail by theoretical analysis and numerical simulations. Experiments conducted on woven CFRP plates demonstrate that the designed PI-ECMO system is capable of effectively detecting both surface and internal cracks, as well as impact defects. The excitation current is significantly reduced compared with traditional eddy current magneto-optical (ECMO) systems.
基金supported by the research fund of State Key Laboratory of Mechanics and Control of Mechanical Structures(Nanjing University of Aeronautics and astronautics)(No. MCMS-I-0518K01&MCMSI-0519G02)Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)the Natural Science Funding (No. 51875277)
文摘Due to the electrical anisotropy of carbon fiber reinforced polymer(CFRP),this paper presents a method to inverse the anisotropic conductivity of unidirectional CFRP laminate using eddy current testing(ECT). The relationship between the conductivity and probe signal of ECT is studied by means of numerical simulation. Finally,the accuracy of inversion result is improved by optimizing the initial conductivity by use of experimental data.
基金supported in part by the National Natural Science Foundation of China(Grant No.92060114)in part by the Sichuan Science and Technology Program(Nos.2022YFS0524 and 2022YFG0044).
文摘It is known that eddy current effect has a great influence on magnetic flux leakage testing(MFL).Usually,contacttype encoder wheels are used to measure MFL testing speed to evaluate the effect and further compensate testing signals.This speed measurement method is complicated,and inevitable abrasion and occasional slippage will reduce the measurement accuracy.In order to solve this problem,based on eddy current effect due to the relative movement,a speed measurement method is proposed,which is contactless and simple.In the high-speed MFL testing,eddy current induced in the specimen will cause an obvious modification to the applied field.This modified field,which is measured by Hall sensor,can be utilized to reflect the moving speed.Firstly,the measurement principle is illustrated based on Faraday’s law.Then,dynamic finite element simulations are conducted to investigate the modified magnetic field distribution.Finally,laboratory experiments are performed to validate the feasibility of the proposed method.The results show that Bmz(r1)and Bmx(r2)have a linear relation with moving speed,which could be used as an alternative measurement parameter.
文摘The paper addresses the first eddy current benchmark problem proposed by the World Federation of Nondestructive Evaluation Centers (WFNDEC). The problem simulates the eddy current response to the presence of an axisymmetric circumferential defect in an Inconel-600 tube. All simulations employ the axisymmetric code of the electromagnetic field simulator Finite Element Method Magnetics. For three different frequencies of excitation, it is explained how the displacement of the detecting coil inside the tube leads to a variation in the impedance of the eddy current coil. Variations of the resistive and inductive components of the impedance with distance from the defect region are used to build the impedance trajectory for each frequency of analysis.
文摘Shaker screen is one of important equipments in the industry of oil, metallurgy, coal and timbering. The movement locus of shaker screen affects the capacity and efficiency of shaker screen to split the solid particle from crude ore directly. To test movement of shaker locus, two eddy current transducers are employed. A discussion of the usage of these eddy current transducer to test and acceleration sensors will be made. The experiment results from a real elliptic shaker screen have good agree with the design requirements.
基金the National Natural Science Foundation of China under Grants No.51607024 and No.61671109.
文摘The eddy current pulsed thermography(ECPT)technique is a research focus in the non-destructive testing(NDT)area for defect inspection.Defect feature extraction for defect information analysis in ECPT is limited by image contrast,heat diffusion,background interference,etc.In this paper,a defect feature extraction approach in ECPT has been proposed to improve the quality of defect features,which is based on image partition,local sparse component evaluation,and feature fusion.This method can extract complete defect features by enhancing the defect area and removing background interference,such as noises and heating coil.Two typical steel specimens are utilized to testify the validity of the proposed approach.Compared with other three common feature extraction algorithms in ECPT,the proposed method can reserve more complete defect features and suppress more background interference.
基金supported by the National Natural Science Foundation of China (No.61171460)
文摘Eddy-current (EC) testing is an effective electromagnetic non-destructive testing (NDT) technique.Planar eddy-current sensor arrays have several advantages such as good coherence,fast response speed,and high sensitivity,which can be used for micro-damage inspection of crucial parts in mechanical equipments and aerospace aviation.The main purpose of this research is to detect the defect in a metallic material surface and identify the length of a crack using planar eddy-current sensor arrays in different directions.The principle and characteristics of planar eddy-current sensor arrays are introduced,and a crack length quantification algorithm in different directions is investigated.A damage quantitative detection system is established based on a field programmable gate array and ARM processor.The system is utilized to inspect the micro defect in a metallic material,which is carved to micro crack with size of 7mm(length)×0.1mm(width)×1mm(depth).The experimental data show that the sensor arrays can be used for the length measurement repeatedly,and that the uncertainty of the length measurement is below ±0.2mm.