In this paper,Eliassen-Palm theory and associated diagnostic method are used to discuss the dynamical mechanism of the interaction between eddy flux and zonal averaged flow in the sudden change of the general circulat...In this paper,Eliassen-Palm theory and associated diagnostic method are used to discuss the dynamical mechanism of the interaction between eddy flux and zonal averaged flow in the sudden change of the general circulation in the Northern Hemisphere in early summer of 1982,which indicates that the northward jump of subtropic jet stream is closely related to the enhanced transport of mid-latitude eddy energy to the subtropic tro- popause.However,the direction of the transport is conditioned by the structure of zonal averaged flow.It is evident that the adjustment of zonal averaged flow responses quickly to the eddy transport during this episode. As regard to the suddenness of the change of circulation,the critical role is played by the eddy forcing,展开更多
Corrections of density effects resulting from air-parcel expansion/compression are important in interpreting eddy covariance fluxes of water vapor and CO2 when open-path systems are used. To account for these effects,...Corrections of density effects resulting from air-parcel expansion/compression are important in interpreting eddy covariance fluxes of water vapor and CO2 when open-path systems are used. To account for these effects, mean vertical velocity and perturbation of the density of dry air are two critical parameters in treating those physical processes responsible for density variations. Based on various underlying assumptions, different studies have obtained different formulas for the mean vertical velocity and perturbation of the density of dry air, leading to a number of approaches to correct density effects. In this study, we re-examine physical processes related to different assumptions that are made to formulate the density effects. Specifically, we re-examine the assumptions of a zero dry air flux and a zero moist air flux in the surface layer, used for treating density variations, and their implications for correcting density effects. It is found that physical processes in relation to the assumption of a zero dry air flux account for the influence of dry air expansion/compression on density variations. Meanwhile, physical processes in relation to the assumption of a zero moist air flux account for the influence of moist air expansion/compression on density variations. In this study, we also re-examine mixing ratio issues. Our results indicate that the assumption of a zero dry air flux favors the use of the mixing ratio relative to dry air, while the assumption of a zero moist air flux favors the use of the mixing ratio relative to the total moist air. Additionally, we compare different formula for the mean vertical velocity, generated by air-parcel expansion/compression, and for density effect corrections using eddy covariance data measured over three boreal ecosystems.展开更多
Ocean eddies produce strong vertical heat flux(VHF)in the upper ocean,exerting profound influences on the climate and ecosystem.Currently,mooring array provides a standard way to estimate the eddy-induced VHF(EVHF)bas...Ocean eddies produce strong vertical heat flux(VHF)in the upper ocean,exerting profound influences on the climate and ecosystem.Currently,mooring array provides a standard way to estimate the eddy-induced VHF(EVHF)based on the adiabatic potential density equation.Apart from the validity of adiabatic assumption,it remains unclear to what extent the estimated EVHF at a single location within a limited time period is representative of its climatological mean value.In this study,we analyzed the above issue by systematically evaluating the variability of EVHF simulated by a 1-km ocean model configured over the Kuroshio Extension.It is found that the EVHF at a single location exhibits pronounced variability.Even averaged over one year that is comparable to the current maintenance capacity of mooring array,the EVHF still deviates significantly from its climatological mean value.For more than 49%of locations in our computational domain(31°-40°N,149°-166°E),the discrepancy between the one-year mean EVHF and its climatological mean value at the peaking depth is larger than the climatological mean itself.The mesoscale eddies play a dominant role in the variability of EVHF but contribute little to the climatological mean EVHF;the opposite is true for submesoscale eddies.Our findings indicate that nested mooring array allowing for isolating the effects of submesoscale eddies will be useful to obtain climatological mean EVHF.展开更多
Recent advances in remote sensing technology and methods have resulted in the development of an evapotranspiration(ET) product from the Moderate Resolution Imaging Spectrometer(MOD16). The accuracy of this product how...Recent advances in remote sensing technology and methods have resulted in the development of an evapotranspiration(ET) product from the Moderate Resolution Imaging Spectrometer(MOD16). The accuracy of this product however has not been tested for coastal wetland ecosystems. The objective of this study therefore is to validate the MOD16 ET product using data from one eddy covariance flux tower situated in the Panjin coastal wetland ecosystem within the Liaohe River Delta, Northeast China. Cumulative ET data over an eight-day period in 2005 from the flux tower was calculated to coincide with the MOD16 products across the same period. Results showed that data from the flux tower were inconsistent with that gained form the MOD16 ET. In general, results from Panjin showed that there was an underestimation of MOD16 ET in the spring and fall, with Biases of -2.27 and -3.53 mm/8 d, respectively(–40.58% and -49.13% of the observed mean). Results for Bias during the summer had a range of 1.77 mm/8 d(7.82% of the observed mean), indicating an overestimation of MOD16 ET. According to the RMSE, summer(6.14 mm/8 d) achieved the lowest value, indicating low accuracy of the MOD16 ET product. However, RMSE(2.09 mm/8 d) in spring was the same as that in the fall. Relationship between ET and its relevant meteorological parameters were analyzed. Results indicated a very good relationship between surface air temperature and ET. Meanwhile a significant relationship between wind speed and ET also existed. The inconsistent comparison of MOD16 and flux tower-based ET are mainly attributed to the parameterization of the Penman-Monteith model, flux tower measurement errors, and flux tower footprint vs. MODIS pixels.展开更多
Background: Capturing the response of forest ecosystems to inter-annual climate variability is a great challenge.In this study, we tested the capability of an individual-based forest gap model to display carbon fluxe...Background: Capturing the response of forest ecosystems to inter-annual climate variability is a great challenge.In this study, we tested the capability of an individual-based forest gap model to display carbon fluxes at yearly and daily time scales.The forest model was applied to a spruce forest to simulate the gross primary production(GPP), respiration and net ecosystem exchange(NEE).We analyzed how the variability in climate affected simulated carbon fluxes at the scale of the forest model.Results: Six years were simulated at a daily time scale and compared to the observed eddy covariance(EC) data.In general, the seasonal cycle of the individual carbon fluxes was correctly described by the forest model.However, the estimated GPP differed from the observed data on the days of extreme climatic conditions.Two new parameterizations were developed: one resulting from a numerical calibration, and the other resulting from a filtering method.We suggest new parameter values and even a new function for the temperature limitation of photosynthesis.Conclusions: The forest model reproduced the observed carbon fluxes of a forest ecosystem quite wel.Of the three parameterizations, the calibrated model version performed best.However, the filtering approach showed that calibrated parameter values do not necessarily correctly display the individual functional relations.The concept of simulating forest dynamics at the individual base is a valuable tool for simulating the NEE, GPP and respiration of forest ecosystems.展开更多
The Xihu desert wetland is located in an extremely arid area in Dunhuang,Gansu province of Northwest China.The area is home to an unusual geographic and ecological environment that is considered unique,both in China a...The Xihu desert wetland is located in an extremely arid area in Dunhuang,Gansu province of Northwest China.The area is home to an unusual geographic and ecological environment that is considered unique,both in China and the world.Microclimate is not only related to topography,but is also affected by the physical properties of underlying ground surfaces.Microclimate and CO2 flux have different characteristics under different underlying surface conditions.However,until now,few studies have investigated the microclimate characteristics and CO2 flux in this area.The eddy covariance technique(ECT) is a widely used and effective method for studying such factors in different ecosystems.Basing on data from continuous fine days obtained in the Dunhuang Xihu desert wetland between September 2012 and September 2013,this paper discussed and compared the characteristics of daily microclimate variations and CO2 fluxes between the two periods.Results from both years showed that there was a level of turbulent mixing and updraft in the area,and that the turbulent momentum flux was controlled by wind shear under good weather conditions.The horizontal wind velocity,friction wind velocity and vertical wind velocity were commendably consistent with each other.Air temperature in the surface layer followed an initial decreasing trend,followed by an increasing then decreasing trend under similar net radiation conditions.With changes in air temperature,the soil temperature in the surface layer follows a more obvious sinusoidal fluctuation than that in the subsoil.Components of ground surface radiation during the two study periods showed typical diurnal variations.The maximum diurnal absorption of CO2 occurred at around 11:00(Beijing time) in the Xihu desert wetland,and the concentrations of CO2 in both periods gradually decreased with time.This area was therefore considered to act as a carbon sink during the two observation periods.展开更多
Based on the final analysis data with horizontal resolution of 1°× 1°(four times a day) from the National Centers for Environmental Prediction(NCEP), a typical Northeast China cold vortex(NCCV) during t...Based on the final analysis data with horizontal resolution of 1°× 1°(four times a day) from the National Centers for Environmental Prediction(NCEP), a typical Northeast China cold vortex(NCCV) during the spring of 2010 was examined with the quasi-Lagrange- form eddy flux circulation(EFC) budget equation. Results indicated that the mechanisms that account for the development, maintenance, and attenuation of the cyclone varied with levels and stages. Displacement of the cyclone and transports by background environmental circulations dominated the variation of the cyclone in the middle and upper levels, whereas displacement and divergence associated with the cyclone dominated the evolution of the NCCV in the middle and lower levels. Moreover, interactions between the NCCV and other subsynoptic weather systems were important for the development of the cyclone, and the pattern of background environmental circulations was also important for the evolution of the NCCV, since the cyclone enhanced(weakened) as it moved from areas of low(high) vorticity to high(low) ones.展开更多
Impact factors on the salinity budget, especially the eddy salt fluxes and smaller-scale diffusive salt fluxes for the upper 50 m of the Bay of Bengal(BoB) in 2014 are investigated using a box model based on the Regio...Impact factors on the salinity budget, especially the eddy salt fluxes and smaller-scale diffusive salt fluxes for the upper 50 m of the Bay of Bengal(BoB) in 2014 are investigated using a box model based on the Regional Ocean Modeling System(ROMS) daily outputs. The model results reproduce that the precipitation and river runoff s are the dominant factors modulating the sharp salinity decrease during the summer monsoon season. The analysis shows that the salinity increase after the summer monsoon is mostly due to the meridional advective and diffusive salt fluxes. The vertical advective salt flux, which is sensitive to the different signals of the wind stress curl, plays an important role in balancing the salinity change induced by the meridional advective salt flux during both the summer and winter monsoon seasons. Distinctive spatial mesoscale structures are presented in the eddy salt flux throughout the year, and their contributions are sizeable(over 30% in the meridional direction and about 10%–30% in the vertical direction). The meridional eddy salt flux is larger in the monsoon seasons than that in the inter-monsoon seasons, and in a positive pattern near the western boundary during the winter monsoon and autumn inter-monsoon. The vertical eddy salt flux makes an important contribution to the salinity budget, especially along the coastal area and around the Andaman and Nicobar Islands. The vertical eddy salt flux becomes large when a tropical cyclone passes the area.展开更多
Tropical Cyclone OCKHI over the North Indian Ocean during 2017 underwent dramatic development and rapid intensification very close to the land-Sri Lanka,extreme South Indian coast and Lakshadweep area during its initi...Tropical Cyclone OCKHI over the North Indian Ocean during 2017 underwent dramatic development and rapid intensification very close to the land-Sri Lanka,extreme South Indian coast and Lakshadweep area during its initial developmental stage and caused extensive damages over these areas.On examining the physical and structural mechanism involved in such development,it is observed that the initial development was associated with axi-symmetrisation of the vortex that could be associated with Vortex Rossby waves near the eyewall.Associated with the expulsion of high vorticity from the centre during asymmetry mixing,there was outward propagation of eddy angular momentum flux in the lower levels that strengthened a low level anticyclone to the northeast of the TC centre which in turn enhanced the cyclonic inflow near the TC centre.The rapid intensification phase was associated with vertical non-uniform heating with upper and lower tropospheric warming associated with latent heat release in convection.During the mature phase,the system sustained‘very severe’intensity even under increasing vertical shear and lower ocean heat flux under the influence of a break in the sub tropical ridge to the north of the system centre that enhanced the poleward outflow in the upper troposphere.展开更多
The barotropic processes associated with the development of a precipitation system are investigated through analysis of cloud-resolving model simulations of Mei-yu torrential rainfall events over eastern China in mid-...The barotropic processes associated with the development of a precipitation system are investigated through analysis of cloud-resolving model simulations of Mei-yu torrential rainfall events over eastern China in mid-June 2011. During the model integration period, there were three major heavy rainfall events: 9–12, 13–16 and 16–20 June. The kinetic energy is converted from perturbation to mean circulations in the first and second period, whereas it is converted from mean to perturbation circulations in the third period. Further analysis shows that kinetic energy conversion is determined by vertical transport of zonal momentum. Thus, the prognostic equation of vertical transport of zonal momentum is derived, in which its tendency is associated with dynamic, pressure gradient and buoyancy processes. The kinetic energy conversion from perturbation to mean circulations in the first period is mainly associated with the dynamic processes. The kinetic energy conversion from mean to perturbation circulations in the third period is generally related to the pressure gradient processes.展开更多
Based on 25-year(1987–2011) tropical cyclone(TC) best track data, a statistical study was carried out to investigate the basic features of upper-tropospheric TC–environment interactions over the western North Pa...Based on 25-year(1987–2011) tropical cyclone(TC) best track data, a statistical study was carried out to investigate the basic features of upper-tropospheric TC–environment interactions over the western North Pacific. Interaction was defined as the absolute value of eddy momentum flux convergence(EFC) exceeding 10 m s^(-1)d^(-1). Based on this definition, it was found that 18% of all six-hourly TC samples experienced interaction. Extreme interaction cases showed that EFC can reach^120 m s^(-1)d^(-1) during the extratropical-cyclone(EC) stage, an order of magnitude larger than reported in previous studies.Composite analysis showed that positive interactions are characterized by a double-jet flow pattern, rather than the traditional trough pattern, because it is the jets that bring in large EFC from the upper-level environment to the TC center. The role of the outflow jet is also enhanced by relatively low inertial stability, as compared to the inflow jet. Among several environmental factors, it was found that extremely large EFC is usually accompanied by high inertial stability, low SST and strong vertical wind shear(VWS). Thus, the positive effect of EFC is cancelled by their negative effects. Only those samples during the EC stage, whose intensities were less dependent on VWS and the underlying SST, could survive in extremely large EFC environments, or even re-intensify. For classical TCs(not in the EC stage), it was found that environments with a moderate EFC value generally below ~25 m s^(-1)d^(-1) are more favorable for a TC's intensification than those with extremely large EFC.展开更多
The turbulent flow over a channel bed roughened by three layers of closely packed spheres with a Reynolds number of Re= 15 000 is investigated using the large eddy simulation(LES) and the double-averaging(DA) meth...The turbulent flow over a channel bed roughened by three layers of closely packed spheres with a Reynolds number of Re= 15 000 is investigated using the large eddy simulation(LES) and the double-averaging(DA) method. The DA velocity is compared with the results of the corresponding laboratory experiments to validate the LES results. The existence of the types of vortex structures is demonstrated by the Q-criterion above the permeable bed. The turbulent kinetic energy(TKE) fluxes and budget are quantified and discussed. The results show that the TKE fluxes are directed downward and downstream near the virtual bed level. In the TKE budget, the form-induced diffusion rate is significant in the vicinity of the crest bed level, and the TKE production rate and the dissipation rate attain their peaks at the crest bed level and decrease sharply below it.展开更多
A deep-ocean mooring system was deployed 100 m away from an active hydrothermal vent over the Southwest Indian Ridge (SWIR), where the water depth is about 2,800 m. One year of data on ocean temperature 50 m away fr...A deep-ocean mooring system was deployed 100 m away from an active hydrothermal vent over the Southwest Indian Ridge (SWIR), where the water depth is about 2,800 m. One year of data on ocean temperature 50 m away from the ocean floor and on velocities at four levels (44 m, 40 m, 36 m, and 32 m away from the ocean floor) were collected by the mooring system. Multiple- scale variations were extracted from these data: seasonal, tidal, super-tidal, and eddy scales. The semidiumal tide was the strongest tidal signal among all the tidal constituents in both currents and temperature. With the multiple-scale variation presented in the data, a new method was developed to decompose the data into five parts in terms of temporal scales: time-mean, seasonal, tidal, super-tidal, and eddy. It was shown that both eddy and tidal heat (momentum) fluxes were characterized by variation in the bottom topography: the tidal fluxes of heat and momentum in the along-isobath direction were much stronger than those in the cross-isobath direction. For the heat flux, eddy heat flux was stronger than tidal heat flux in the cross-isobath direction, while eddy heat flux was weaker in the along-isobath direction. For the momentum flux, the eddy momentum flux was weaker than tidal momentum flux in both directions. The eddy momen^m fluxes at the four levels had a good relationship with the magnitude of mean currents: it increased with the mean current in an exponential relationship.展开更多
Ozone(O3) concentration and flux(Fo) were measured using the eddy covariance technique over a wheat field in the Northwest-Shandong Plain of China. The O3-induced wheat yield loss was estimated by utilizing O3expo...Ozone(O3) concentration and flux(Fo) were measured using the eddy covariance technique over a wheat field in the Northwest-Shandong Plain of China. The O3-induced wheat yield loss was estimated by utilizing O3exposure-response models. The results showed that:(1) During the growing season(7 March to 7 June, 2012), the minimum(16.1 ppb V) and maximum(53.3 ppb V)mean O3 concentrations occurred at approximately 6:30 and 16:00, respectively. The mean and maximum of all measured O3 concentrations were 31.3 and 128.4 ppb V, respectively. The variation of O3 concentration was mainly affected by solar radiation and temperature.(2) The mean diurnal variation of deposition velocity(V d) can be divided into four phases, and the maximum occurred at noon(12:00). Averaged V d during daytime(6:00–18:00) and nighttime(18:00–6:00) were 0.42 and 0.14 cm/sec, respectively. The maximum of measured V d was about1.5 cm/sec. The magnitude of V d was influenced by the wheat growing stage, and its variation was significantly correlated with both global radiation and friction velocity.(3) The maximum mean F o appeared at 14:00, and the maximum measured F o was-33.5 nmol/(m^2·sec). Averaged F o during daytime and nighttime were-6.9 and-1.5 nmol/(m^2·sec), respectively.(4) Using O3 exposure-response functions obtained from the USA, Europe, and China, the O3-induced wheat yield reduction in the district was estimated as 12.9% on average(5.5%–23.3%). Large uncertainties were related to the statistical methods and environmental conditions involved in deriving the exposure-response functions.展开更多
Satellite-based remote sensed phenology has been widely used to assess global climate change.However,it is constrained by uncertain linkages with photo-synthesis activity.Two dynamic threshold methods were employed to...Satellite-based remote sensed phenology has been widely used to assess global climate change.However,it is constrained by uncertain linkages with photo-synthesis activity.Two dynamic threshold methods were employed to retrieve spring phenology metrics from four Moderate Resolution Imaging Spectro-radiometer(MODIS)products,including fraction of Absorbed Photosyntheti-cally Active Radiation(fAPAR),Leaf Area Index(LAI),Normalized Difference Vegetation Index(NDVI),and Enhanced Vegetation Index(EVI)for three temperate deciduous broadleaf forests in North America between 2001 and 2009.These MODIS-based spring phenology metrics were subsequently linked to the photosynthetic curves(daily gross primary productivity,GPP)measured by an eddy covariance flux tower.The 20% dynamic threshold spring onset metrics from MODIS products were closer to the photosynthesis onset metrics at the date of 2% GPP increase for NDVI and fAPAR,and closer to the date of 5%and 10% increase of GPP for EVI and LAI,respectively.The 50% dynamic threshold onset metrics were closer to the photosynthesis onset metrics at the date of 10%GPP increase for NDVI,and closer to the date of 20% GPP increase for fAPAR,LAI and EVI,respectively.These results can improve our knowledge on the photosynthesis activity status of remotely sensed spring phenology metrics.展开更多
文摘In this paper,Eliassen-Palm theory and associated diagnostic method are used to discuss the dynamical mechanism of the interaction between eddy flux and zonal averaged flow in the sudden change of the general circulation in the Northern Hemisphere in early summer of 1982,which indicates that the northward jump of subtropic jet stream is closely related to the enhanced transport of mid-latitude eddy energy to the subtropic tro- popause.However,the direction of the transport is conditioned by the structure of zonal averaged flow.It is evident that the adjustment of zonal averaged flow responses quickly to the eddy transport during this episode. As regard to the suddenness of the change of circulation,the critical role is played by the eddy forcing,
文摘Corrections of density effects resulting from air-parcel expansion/compression are important in interpreting eddy covariance fluxes of water vapor and CO2 when open-path systems are used. To account for these effects, mean vertical velocity and perturbation of the density of dry air are two critical parameters in treating those physical processes responsible for density variations. Based on various underlying assumptions, different studies have obtained different formulas for the mean vertical velocity and perturbation of the density of dry air, leading to a number of approaches to correct density effects. In this study, we re-examine physical processes related to different assumptions that are made to formulate the density effects. Specifically, we re-examine the assumptions of a zero dry air flux and a zero moist air flux in the surface layer, used for treating density variations, and their implications for correcting density effects. It is found that physical processes in relation to the assumption of a zero dry air flux account for the influence of dry air expansion/compression on density variations. Meanwhile, physical processes in relation to the assumption of a zero moist air flux account for the influence of moist air expansion/compression on density variations. In this study, we also re-examine mixing ratio issues. Our results indicate that the assumption of a zero dry air flux favors the use of the mixing ratio relative to dry air, while the assumption of a zero moist air flux favors the use of the mixing ratio relative to the total moist air. Additionally, we compare different formula for the mean vertical velocity, generated by air-parcel expansion/compression, and for density effect corrections using eddy covariance data measured over three boreal ecosystems.
基金The Taishan Scholar Fund under contract No.tsqn201909052。
文摘Ocean eddies produce strong vertical heat flux(VHF)in the upper ocean,exerting profound influences on the climate and ecosystem.Currently,mooring array provides a standard way to estimate the eddy-induced VHF(EVHF)based on the adiabatic potential density equation.Apart from the validity of adiabatic assumption,it remains unclear to what extent the estimated EVHF at a single location within a limited time period is representative of its climatological mean value.In this study,we analyzed the above issue by systematically evaluating the variability of EVHF simulated by a 1-km ocean model configured over the Kuroshio Extension.It is found that the EVHF at a single location exhibits pronounced variability.Even averaged over one year that is comparable to the current maintenance capacity of mooring array,the EVHF still deviates significantly from its climatological mean value.For more than 49%of locations in our computational domain(31°-40°N,149°-166°E),the discrepancy between the one-year mean EVHF and its climatological mean value at the peaking depth is larger than the climatological mean itself.The mesoscale eddies play a dominant role in the variability of EVHF but contribute little to the climatological mean EVHF;the opposite is true for submesoscale eddies.Our findings indicate that nested mooring array allowing for isolating the effects of submesoscale eddies will be useful to obtain climatological mean EVHF.
基金Under the auspices of National Key R&D Program of China(No.2016YFA0602301-1)National Key Research Project(No.2013CB430401)
文摘Recent advances in remote sensing technology and methods have resulted in the development of an evapotranspiration(ET) product from the Moderate Resolution Imaging Spectrometer(MOD16). The accuracy of this product however has not been tested for coastal wetland ecosystems. The objective of this study therefore is to validate the MOD16 ET product using data from one eddy covariance flux tower situated in the Panjin coastal wetland ecosystem within the Liaohe River Delta, Northeast China. Cumulative ET data over an eight-day period in 2005 from the flux tower was calculated to coincide with the MOD16 products across the same period. Results showed that data from the flux tower were inconsistent with that gained form the MOD16 ET. In general, results from Panjin showed that there was an underestimation of MOD16 ET in the spring and fall, with Biases of -2.27 and -3.53 mm/8 d, respectively(–40.58% and -49.13% of the observed mean). Results for Bias during the summer had a range of 1.77 mm/8 d(7.82% of the observed mean), indicating an overestimation of MOD16 ET. According to the RMSE, summer(6.14 mm/8 d) achieved the lowest value, indicating low accuracy of the MOD16 ET product. However, RMSE(2.09 mm/8 d) in spring was the same as that in the fall. Relationship between ET and its relevant meteorological parameters were analyzed. Results indicated a very good relationship between surface air temperature and ET. Meanwhile a significant relationship between wind speed and ET also existed. The inconsistent comparison of MOD16 and flux tower-based ET are mainly attributed to the parameterization of the Penman-Monteith model, flux tower measurement errors, and flux tower footprint vs. MODIS pixels.
基金supported by the Helmholtz-Alliance Remote Sensing and Earth System Dynamicssupported by the Helmholtz Impulse and Networking Fund through the Helmholtz Interdisciplinary Graduate School for Environmental Research(HIGRADE)
文摘Background: Capturing the response of forest ecosystems to inter-annual climate variability is a great challenge.In this study, we tested the capability of an individual-based forest gap model to display carbon fluxes at yearly and daily time scales.The forest model was applied to a spruce forest to simulate the gross primary production(GPP), respiration and net ecosystem exchange(NEE).We analyzed how the variability in climate affected simulated carbon fluxes at the scale of the forest model.Results: Six years were simulated at a daily time scale and compared to the observed eddy covariance(EC) data.In general, the seasonal cycle of the individual carbon fluxes was correctly described by the forest model.However, the estimated GPP differed from the observed data on the days of extreme climatic conditions.Two new parameterizations were developed: one resulting from a numerical calibration, and the other resulting from a filtering method.We suggest new parameter values and even a new function for the temperature limitation of photosynthesis.Conclusions: The forest model reproduced the observed carbon fluxes of a forest ecosystem quite wel.Of the three parameterizations, the calibrated model version performed best.However, the filtering approach showed that calibrated parameter values do not necessarily correctly display the individual functional relations.The concept of simulating forest dynamics at the individual base is a valuable tool for simulating the NEE, GPP and respiration of forest ecosystems.
基金supported by the National Science-technology Support Plan Projects "Key Techniques Research and Demonstration of Ecological Remediation of Dunhuang" (2012BAC08B07)
文摘The Xihu desert wetland is located in an extremely arid area in Dunhuang,Gansu province of Northwest China.The area is home to an unusual geographic and ecological environment that is considered unique,both in China and the world.Microclimate is not only related to topography,but is also affected by the physical properties of underlying ground surfaces.Microclimate and CO2 flux have different characteristics under different underlying surface conditions.However,until now,few studies have investigated the microclimate characteristics and CO2 flux in this area.The eddy covariance technique(ECT) is a widely used and effective method for studying such factors in different ecosystems.Basing on data from continuous fine days obtained in the Dunhuang Xihu desert wetland between September 2012 and September 2013,this paper discussed and compared the characteristics of daily microclimate variations and CO2 fluxes between the two periods.Results from both years showed that there was a level of turbulent mixing and updraft in the area,and that the turbulent momentum flux was controlled by wind shear under good weather conditions.The horizontal wind velocity,friction wind velocity and vertical wind velocity were commendably consistent with each other.Air temperature in the surface layer followed an initial decreasing trend,followed by an increasing then decreasing trend under similar net radiation conditions.With changes in air temperature,the soil temperature in the surface layer follows a more obvious sinusoidal fluctuation than that in the subsoil.Components of ground surface radiation during the two study periods showed typical diurnal variations.The maximum diurnal absorption of CO2 occurred at around 11:00(Beijing time) in the Xihu desert wetland,and the concentrations of CO2 in both periods gradually decreased with time.This area was therefore considered to act as a carbon sink during the two observation periods.
基金supported by the National Natural Science Foundation of China (Grant No. 41205027)the National Key Basic Research Program of China (Grant No. 2012CB 417201)
文摘Based on the final analysis data with horizontal resolution of 1°× 1°(four times a day) from the National Centers for Environmental Prediction(NCEP), a typical Northeast China cold vortex(NCCV) during the spring of 2010 was examined with the quasi-Lagrange- form eddy flux circulation(EFC) budget equation. Results indicated that the mechanisms that account for the development, maintenance, and attenuation of the cyclone varied with levels and stages. Displacement of the cyclone and transports by background environmental circulations dominated the variation of the cyclone in the middle and upper levels, whereas displacement and divergence associated with the cyclone dominated the evolution of the NCCV in the middle and lower levels. Moreover, interactions between the NCCV and other subsynoptic weather systems were important for the development of the cyclone, and the pattern of background environmental circulations was also important for the evolution of the NCCV, since the cyclone enhanced(weakened) as it moved from areas of low(high) vorticity to high(low) ones.
基金Supported by the National Key Research and Development Program of China(Nos.2016YFA0601803,2017YFA0604100)the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(No.311020004)+3 种基金the National Natural Science Foundation of China(Nos.41706008,41706094)the Key Program of Marine Economy Development(Six Marine Industries)Special Foundation of Department of Natural Resources of Guangdong Province(No.GDNRC[2020]049)the Natural Science Foundation of Jiangsu Province(No.BK20170953)the National Programme on Global Change and Air-Sea Interaction(No.GASI-IPOVAI-02)。
文摘Impact factors on the salinity budget, especially the eddy salt fluxes and smaller-scale diffusive salt fluxes for the upper 50 m of the Bay of Bengal(BoB) in 2014 are investigated using a box model based on the Regional Ocean Modeling System(ROMS) daily outputs. The model results reproduce that the precipitation and river runoff s are the dominant factors modulating the sharp salinity decrease during the summer monsoon season. The analysis shows that the salinity increase after the summer monsoon is mostly due to the meridional advective and diffusive salt fluxes. The vertical advective salt flux, which is sensitive to the different signals of the wind stress curl, plays an important role in balancing the salinity change induced by the meridional advective salt flux during both the summer and winter monsoon seasons. Distinctive spatial mesoscale structures are presented in the eddy salt flux throughout the year, and their contributions are sizeable(over 30% in the meridional direction and about 10%–30% in the vertical direction). The meridional eddy salt flux is larger in the monsoon seasons than that in the inter-monsoon seasons, and in a positive pattern near the western boundary during the winter monsoon and autumn inter-monsoon. The vertical eddy salt flux makes an important contribution to the salinity budget, especially along the coastal area and around the Andaman and Nicobar Islands. The vertical eddy salt flux becomes large when a tropical cyclone passes the area.
文摘Tropical Cyclone OCKHI over the North Indian Ocean during 2017 underwent dramatic development and rapid intensification very close to the land-Sri Lanka,extreme South Indian coast and Lakshadweep area during its initial developmental stage and caused extensive damages over these areas.On examining the physical and structural mechanism involved in such development,it is observed that the initial development was associated with axi-symmetrisation of the vortex that could be associated with Vortex Rossby waves near the eyewall.Associated with the expulsion of high vorticity from the centre during asymmetry mixing,there was outward propagation of eddy angular momentum flux in the lower levels that strengthened a low level anticyclone to the northeast of the TC centre which in turn enhanced the cyclonic inflow near the TC centre.The rapid intensification phase was associated with vertical non-uniform heating with upper and lower tropospheric warming associated with latent heat release in convection.During the mature phase,the system sustained‘very severe’intensity even under increasing vertical shear and lower ocean heat flux under the influence of a break in the sub tropical ridge to the north of the system centre that enhanced the poleward outflow in the upper troposphere.
基金supported by the National Natural Science Foundation of China (Grant No. 41475039)National Key Basic Research and Development Project of China (Grant No. 2015CB953601).
文摘The barotropic processes associated with the development of a precipitation system are investigated through analysis of cloud-resolving model simulations of Mei-yu torrential rainfall events over eastern China in mid-June 2011. During the model integration period, there were three major heavy rainfall events: 9–12, 13–16 and 16–20 June. The kinetic energy is converted from perturbation to mean circulations in the first and second period, whereas it is converted from mean to perturbation circulations in the third period. Further analysis shows that kinetic energy conversion is determined by vertical transport of zonal momentum. Thus, the prognostic equation of vertical transport of zonal momentum is derived, in which its tendency is associated with dynamic, pressure gradient and buoyancy processes. The kinetic energy conversion from perturbation to mean circulations in the first period is mainly associated with the dynamic processes. The kinetic energy conversion from mean to perturbation circulations in the third period is generally related to the pressure gradient processes.
基金jointly sponsored by the National Natural Science Foundation of China(Grant Nos.41205032,41405048 and 41375050)China Special Fund for Meteorological Research in the Public Interest(Grant No.GYHY201406008)the Guangdong Marine Disaster Emergency Response Technology Research Center(2012A032100004)
文摘Based on 25-year(1987–2011) tropical cyclone(TC) best track data, a statistical study was carried out to investigate the basic features of upper-tropospheric TC–environment interactions over the western North Pacific. Interaction was defined as the absolute value of eddy momentum flux convergence(EFC) exceeding 10 m s^(-1)d^(-1). Based on this definition, it was found that 18% of all six-hourly TC samples experienced interaction. Extreme interaction cases showed that EFC can reach^120 m s^(-1)d^(-1) during the extratropical-cyclone(EC) stage, an order of magnitude larger than reported in previous studies.Composite analysis showed that positive interactions are characterized by a double-jet flow pattern, rather than the traditional trough pattern, because it is the jets that bring in large EFC from the upper-level environment to the TC center. The role of the outflow jet is also enhanced by relatively low inertial stability, as compared to the inflow jet. Among several environmental factors, it was found that extremely large EFC is usually accompanied by high inertial stability, low SST and strong vertical wind shear(VWS). Thus, the positive effect of EFC is cancelled by their negative effects. Only those samples during the EC stage, whose intensities were less dependent on VWS and the underlying SST, could survive in extremely large EFC environments, or even re-intensify. For classical TCs(not in the EC stage), it was found that environments with a moderate EFC value generally below ~25 m s^(-1)d^(-1) are more favorable for a TC's intensification than those with extremely large EFC.
基金Project supported by the National Natural Science Foun-dation of China(Grant No.11372161,51209230)
文摘The turbulent flow over a channel bed roughened by three layers of closely packed spheres with a Reynolds number of Re= 15 000 is investigated using the large eddy simulation(LES) and the double-averaging(DA) method. The DA velocity is compared with the results of the corresponding laboratory experiments to validate the LES results. The existence of the types of vortex structures is demonstrated by the Q-criterion above the permeable bed. The turbulent kinetic energy(TKE) fluxes and budget are quantified and discussed. The results show that the TKE fluxes are directed downward and downstream near the virtual bed level. In the TKE budget, the form-induced diffusion rate is significant in the vicinity of the crest bed level, and the TKE production rate and the dissipation rate attain their peaks at the crest bed level and decrease sharply below it.
基金The data used in this paper are from Chinese DY115- 21 cruise. We thank all the staff for their hard work, especially our colleague Tao Ding, who brought back the mooring system successfully and acquired these invaluable observational data. We express our sincere gratitude to Weifang Jin and Tao Ding, for their help during the early-stage data processing. This study was support by the National Basic Research Program of China on hydrothermal plume characteristics and environmental effects (No. 2012CB417303), the project of global change and interaction between ocean and atmosphere (GASI-03-01-01-07). CD appreciates the support from the National Natural Science Foundation of China (Grant Nos. 41376033, 41476022, and 41490640), and the NUIST startup grants. We appreciate Jian Zhu's help to make Figure 1.
文摘A deep-ocean mooring system was deployed 100 m away from an active hydrothermal vent over the Southwest Indian Ridge (SWIR), where the water depth is about 2,800 m. One year of data on ocean temperature 50 m away from the ocean floor and on velocities at four levels (44 m, 40 m, 36 m, and 32 m away from the ocean floor) were collected by the mooring system. Multiple- scale variations were extracted from these data: seasonal, tidal, super-tidal, and eddy scales. The semidiumal tide was the strongest tidal signal among all the tidal constituents in both currents and temperature. With the multiple-scale variation presented in the data, a new method was developed to decompose the data into five parts in terms of temporal scales: time-mean, seasonal, tidal, super-tidal, and eddy. It was shown that both eddy and tidal heat (momentum) fluxes were characterized by variation in the bottom topography: the tidal fluxes of heat and momentum in the along-isobath direction were much stronger than those in the cross-isobath direction. For the heat flux, eddy heat flux was stronger than tidal heat flux in the cross-isobath direction, while eddy heat flux was weaker in the along-isobath direction. For the momentum flux, the eddy momentum flux was weaker than tidal momentum flux in both directions. The eddy momen^m fluxes at the four levels had a good relationship with the magnitude of mean currents: it increased with the mean current in an exponential relationship.
基金supported by the National Natural Science Foundation of China (No.31070400)the National Basic Research Program of China (No.2010CB833501-01)+1 种基金the Innovation Project of the Institute of Geographic Sciences and Natural Resources Research, CAS (Grant No.201003001)the Max Planck Society (Germany)
文摘Ozone(O3) concentration and flux(Fo) were measured using the eddy covariance technique over a wheat field in the Northwest-Shandong Plain of China. The O3-induced wheat yield loss was estimated by utilizing O3exposure-response models. The results showed that:(1) During the growing season(7 March to 7 June, 2012), the minimum(16.1 ppb V) and maximum(53.3 ppb V)mean O3 concentrations occurred at approximately 6:30 and 16:00, respectively. The mean and maximum of all measured O3 concentrations were 31.3 and 128.4 ppb V, respectively. The variation of O3 concentration was mainly affected by solar radiation and temperature.(2) The mean diurnal variation of deposition velocity(V d) can be divided into four phases, and the maximum occurred at noon(12:00). Averaged V d during daytime(6:00–18:00) and nighttime(18:00–6:00) were 0.42 and 0.14 cm/sec, respectively. The maximum of measured V d was about1.5 cm/sec. The magnitude of V d was influenced by the wheat growing stage, and its variation was significantly correlated with both global radiation and friction velocity.(3) The maximum mean F o appeared at 14:00, and the maximum measured F o was-33.5 nmol/(m^2·sec). Averaged F o during daytime and nighttime were-6.9 and-1.5 nmol/(m^2·sec), respectively.(4) Using O3 exposure-response functions obtained from the USA, Europe, and China, the O3-induced wheat yield reduction in the district was estimated as 12.9% on average(5.5%–23.3%). Large uncertainties were related to the statistical methods and environmental conditions involved in deriving the exposure-response functions.
基金The authors gratefully acknowledge financial support provided for this research by the National Natural Science Foundation of China(41222008,91125003)the External Cooperation Program of the Chinese Academy of Sciences(GJH21123).
文摘Satellite-based remote sensed phenology has been widely used to assess global climate change.However,it is constrained by uncertain linkages with photo-synthesis activity.Two dynamic threshold methods were employed to retrieve spring phenology metrics from four Moderate Resolution Imaging Spectro-radiometer(MODIS)products,including fraction of Absorbed Photosyntheti-cally Active Radiation(fAPAR),Leaf Area Index(LAI),Normalized Difference Vegetation Index(NDVI),and Enhanced Vegetation Index(EVI)for three temperate deciduous broadleaf forests in North America between 2001 and 2009.These MODIS-based spring phenology metrics were subsequently linked to the photosynthetic curves(daily gross primary productivity,GPP)measured by an eddy covariance flux tower.The 20% dynamic threshold spring onset metrics from MODIS products were closer to the photosynthesis onset metrics at the date of 2% GPP increase for NDVI and fAPAR,and closer to the date of 5%and 10% increase of GPP for EVI and LAI,respectively.The 50% dynamic threshold onset metrics were closer to the photosynthesis onset metrics at the date of 10%GPP increase for NDVI,and closer to the date of 20% GPP increase for fAPAR,LAI and EVI,respectively.These results can improve our knowledge on the photosynthesis activity status of remotely sensed spring phenology metrics.