期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
NONLINEAR EFFECT OF LOCAL ROUGH WALL ON LARGE EDDY STRUCTURE IN BOUNDARY LAYER
1
作者 陆昌根 曹卫东 张艳梅 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第3期194-200,共7页
Based on the building of a theoretical model for the large eddy structure, the nonlinear effect of the local rough wall on the large eddy structure in the boundary layer is studied by direct numerical simulation. Nume... Based on the building of a theoretical model for the large eddy structure, the nonlinear effect of the local rough wall on the large eddy structure in the boundary layer is studied by direct numerical simulation. Numerical results show that factors of the local rough feature, the distributing structure and the intensity, etc. play an important role in the evolution of the large eddy structure in the boundary layer. 展开更多
关键词 surface roughness boundary layers large eddy structure
下载PDF
Regional Characteristics of Typhoon-Induced Ocean Eddies in the East China Sea 被引量:3
2
作者 Jianhong WANG Meiqi LI +4 位作者 X.San LIANG Xing WANG Feng XUE Mo PENG Chunsheng MIAO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第7期826-838,共13页
The asymmetrical structure of typhoon-induced ocean eddies(TIOEs) in the East China Sea(including the Yellow Sea)and the accompanying air–sea interaction are studied using reanalysis products. Thirteen TIOEs are ... The asymmetrical structure of typhoon-induced ocean eddies(TIOEs) in the East China Sea(including the Yellow Sea)and the accompanying air–sea interaction are studied using reanalysis products. Thirteen TIOEs are analyzed and divided into three groups with the k-prototype method: Group A with typhoons passing through the central Yellow Sea; Group B with typhoons re-entering the sea from the western Yellow Sea after landing on continental China; and Group C with typhoons occurring across the eastern Yellow Sea near to the Korean Peninsula. The study region is divided into three zones(Zones Ⅰ, Ⅱ and Ⅲ) according to water depth and the Kuroshio position. The TIOEs in Group A are the strongest and could reverse part of the Kuroshio stream, while TIOEs in the other two groups are easily deformed by topography. The strong currents of the TIOEs impact on the latent heat flux distribution and upward transport, which facilitates the typhoon development. The strong divergence within the TIOEs favors an upwelling-induced cooling. A typical TIOE analysis shows that the intensity of the upwelling of TIOEs is proportional to the water depth, but its magnitude is weaker than the upwelling induced by the topography. In Zones Ⅰ and Ⅱ, the vertical dimensions of TIOEs and their strong currents are much less than the water depths.In shallow water Zone Ⅲ, a reversed circulation appears in the lower layer. The strong currents can lead to a greater, faster,and deeper energy transfer downwards than at the center of TIOEs. 展开更多
关键词 typhoon-induced ocean eddies East China Sea asymmetrical dynamic structure kinetic energy transfer and evolution
下载PDF
Comparison of Reynolds Averaged Navier-Stokes Based Simulation and Large-eddy Simulation for One Isothermal Swirling Flow 被引量:4
3
作者 Sφren Knudsen Kr 《Journal of Thermal Science》 SCIE EI CAS CSCD 2012年第2期154-161,共8页
The flow structure of one isothermal swirling case in the Sydney swirl flame database was studied using two numerical methods. Results from the Reynolds-averaged Navier-Stokes (RANS) approach and large eddy simulation... The flow structure of one isothermal swirling case in the Sydney swirl flame database was studied using two numerical methods. Results from the Reynolds-averaged Navier-Stokes (RANS) approach and large eddy simulation (LES) were compared with experimental measurements. The simulations were applied in two different Cartesian grids which were investigated by a grid independence study for RANS and a post-estimator for LES. The RNG k-ε turbulence model was used in RANS and dynamic Smagorinsky-Lilly model was used as the sub-grid scale model in LES. A validation study and cross comparison of ensemble average and root mean square (RMS) results showed LES outperforms RANS statistic results. Flow field results indicated that both approaches could capture dominant flow structures, like vortex breakdown (VB), and precessing vortex core (PVC). Streamlines indicate that the formation mechanisms of VB deducted from the two methods were different. The vorticity field was also studied using a velocity gradient based method. This research gained in-depth understanding of isothermal swirling flow. 展开更多
关键词 large eddy simulation vortex breakdown vorticity field coherent structure
原文传递
Three-dimensional structure of mesoscale eddies in the western tropical Pacific as revealed by a high-resolution ocean simulation 被引量:1
4
作者 WANG QingYe 《Science China Earth Sciences》 SCIE EI CAS CSCD 2017年第9期1719-1731,共13页
The three-dimensional structure of mesoscale eddies in the western tropical Pacific(6°S–20°N, 120°E–150°E)is investigated using a high-resolution ocean model simulation. Eddy detection and eddy t... The three-dimensional structure of mesoscale eddies in the western tropical Pacific(6°S–20°N, 120°E–150°E)is investigated using a high-resolution ocean model simulation. Eddy detection and eddy tracking algorithms are applied to simulated horizontal velocity vectors, and the anticyclonic and cyclonic eddies identified are composited to obtain their three-dimensional structures. The mean lifetime of all long-lived eddies is about 52 days, and their mean diameter is 147 km. Two typical characteristics of mesoscale eddies are revealed and possible dynamic explanations are analyzed. One typical characteristic is that surface eddies are generally separated from subthermocline eddies along the bifurcation latitude(~13°N) of the North Equatorial Current in the western tropical Pacific, which may be associated with different eddy energy sources and vertical eddy energy fluxes in subtropical and tropical gyres. Surface eddies have maximum swirl velocities of 8–9 cm s^(-1) and can extend to about 1500 m depth. Subthermocline eddies occur below 200 m, with their cores at about 400–600 m depth, and their maximum swirl velocities can reach 10 cm s^(-1). The other typical characteristic is that the meridional velocity component of the eddy is much larger than the zonal component. This characteristic might be due to more zonal eddy pairs(two eddies at the same latitude),which is also supported by the zonal wavelength(about 200 km) in the high-frequency meridional velocity component of the horizontal velocity. 展开更多
关键词 Ocean eddies Western tropical Pacific Three-dimensional structure
原文传递
Buoyancy and turbulence-driven atmospheric circulation over urban areas 被引量:2
5
作者 Yifan Fan Julian Charles Roland Hunt Yuguo Li 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第9期63-71,共9页
In the buoyancy and turbulence-driven atmospheric circulations(BTDAC) that occur over urban areas where the approach means wind speeds are very low(less than turbulent fluctuations and typically 3 m/sec), the surf... In the buoyancy and turbulence-driven atmospheric circulations(BTDAC) that occur over urban areas where the approach means wind speeds are very low(less than turbulent fluctuations and typically 3 m/sec), the surface temperatures are significantly higher than those in the external rural areas, and the atmosphere above the mixing layer is stably stratified. In this paper, the mechanisms of BTDAC formation are studied through laboratory experiments and modelling, with additional low-level inflow from external rural areas and a divergent outflow in the opposite direction in the upper part of the mixed layer. Strong turbulent plumes in the central region mix the flow between lower and higher levels up to the inversion height. There are shear-driven turbulent eddies and weaker buoyant plumes around the periphery of the urban area. As the approach flow is very weak,the recirculating streamlines within the dome restrict the ventilation, and the dispersion of pollution emitted from sources below the inversion height leading to a rise in the mean concentration. Low-level air entrained from rural areas can, however, improve ventilation and lower this concentration. This trend can also be improved if the recirculating structure of the BTDAC flow pattern over urban areas breaks down as a result of the surface temperature distribution not being symmetrical, or as the approach wind speed increases to a level comparable with the mean velocity of circulation, or(except near the equator) the urban area is large enough that the Coriolis acceleration is significant. 展开更多
关键词 Urban heat island Buoyancy and turbulence-driven eddy structures Atmospheric circulation Pollutant dispersion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部