期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Mobile Edge Communications, Computing, and Caching(MEC3) Technology in the Maritime Communication Network 被引量:17
1
作者 Jie Zeng Jiaying Sun +1 位作者 Binwei Wu Xin Su 《China Communications》 SCIE CSCD 2020年第5期223-234,共12页
With the increasing maritime activities and the rapidly developing maritime economy, the fifth-generation(5G) mobile communication system is expected to be deployed at the ocean. New technologies need to be explored t... With the increasing maritime activities and the rapidly developing maritime economy, the fifth-generation(5G) mobile communication system is expected to be deployed at the ocean. New technologies need to be explored to meet the requirements of ultra-reliable and low latency communications(URLLC) in the maritime communication network(MCN). Mobile edge computing(MEC) can achieve high energy efficiency in MCN at the cost of suffering from high control plane latency and low reliability. In terms of this issue, the mobile edge communications, computing, and caching(MEC3) technology is proposed to sink mobile computing, network control, and storage to the edge of the network. New methods that enable resource-efficient configurations and reduce redundant data transmissions can enable the reliable implementation of computing-intension and latency-sensitive applications. The key technologies of MEC3 to enable URLLC are analyzed and optimized in MCN. The best response-based offloading algorithm(BROA) is adopted to optimize task offloading. The simulation results show that the task latency can be decreased by 26.5’ ms, and the energy consumption in terminal users can be reduced to 66.6%. 展开更多
关键词 best response-based offloading algorithm(BROA) energy consumption mobile edge computing(MEC) mobile edge communications computing and caching(MEC3) task offloading
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部