期刊文献+
共找到262篇文章
< 1 2 14 >
每页显示 20 50 100
Enhancing visual security: An image encryption scheme based on parallel compressive sensing and edge detection embedding
1
作者 王一铭 黄树锋 +2 位作者 陈煌 杨健 蔡述庭 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期287-302,共16页
A novel image encryption scheme based on parallel compressive sensing and edge detection embedding technology is proposed to improve visual security. Firstly, the plain image is sparsely represented using the discrete... A novel image encryption scheme based on parallel compressive sensing and edge detection embedding technology is proposed to improve visual security. Firstly, the plain image is sparsely represented using the discrete wavelet transform.Then, the coefficient matrix is scrambled and compressed to obtain a size-reduced image using the Fisher–Yates shuffle and parallel compressive sensing. Subsequently, to increase the security of the proposed algorithm, the compressed image is re-encrypted through permutation and diffusion to obtain a noise-like secret image. Finally, an adaptive embedding method based on edge detection for different carrier images is proposed to generate a visually meaningful cipher image. To improve the plaintext sensitivity of the algorithm, the counter mode is combined with the hash function to generate keys for chaotic systems. Additionally, an effective permutation method is designed to scramble the pixels of the compressed image in the re-encryption stage. The simulation results and analyses demonstrate that the proposed algorithm performs well in terms of visual security and decryption quality. 展开更多
关键词 visual security image encryption parallel compressive sensing edge detection embedding
下载PDF
Machine learning algorithm partially reconfigured on FPGA for an image edge detection system
2
作者 Gracieth Cavalcanti Batista Johnny Oberg +3 位作者 Osamu Saotome Haroldo F.de Campos Velho Elcio Hideiti Shiguemori Ingemar Soderquist 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第2期48-68,共21页
Unmanned aerial vehicles(UAVs)have been widely used in military,medical,wireless communications,aerial surveillance,etc.One key topic involving UAVs is pose estimation in autonomous navigation.A standard procedure for... Unmanned aerial vehicles(UAVs)have been widely used in military,medical,wireless communications,aerial surveillance,etc.One key topic involving UAVs is pose estimation in autonomous navigation.A standard procedure for this process is to combine inertial navigation system sensor information with the global navigation satellite system(GNSS)signal.However,some factors can interfere with the GNSS signal,such as ionospheric scintillation,jamming,or spoofing.One alternative method to avoid using the GNSS signal is to apply an image processing approach by matching UAV images with georeferenced images.But a high effort is required for image edge extraction.Here a support vector regression(SVR)model is proposed to reduce this computational load and processing time.The dynamic partial reconfiguration(DPR)of part of the SVR datapath is implemented to accelerate the process,reduce the area,and analyze its granularity by increasing the grain size of the reconfigurable region.Results show that the implementation in hardware is 68 times faster than that in software.This architecture with DPR also facilitates the low power consumption of 4 mW,leading to a reduction of 57%than that without DPR.This is also the lowest power consumption in current machine learning hardware implementations.Besides,the circuitry area is 41 times smaller.SVR with Gaussian kernel shows a success rate of 99.18%and minimum square error of 0.0146 for testing with the planning trajectory.This system is useful for adaptive applications where the user/designer can modify/reconfigure the hardware layout during its application,thus contributing to lower power consumption,smaller hardware area,and shorter execution time. 展开更多
关键词 Dynamic partial reconfiguration(DPR) Field programmable gate array(FPGA)implementation image edge detection Support vector regression(SVR) Unmanned aerial vehicle(UAV) pose estimation
下载PDF
METHOD OF VECTOR QUANTIZATION CODING USING RECTANGULAR TRANSFORM FOR IMAGE COMPRESSION
3
作者 汪凯 宋国文 《Journal of Electronics(China)》 1990年第4期289-295,共7页
First of all a simple and practical rectangular transform is given,and then thevector quantization technique which is rapidly developing recently is introduced.We combinethe rectangular transform with vector quantizat... First of all a simple and practical rectangular transform is given,and then thevector quantization technique which is rapidly developing recently is introduced.We combinethe rectangular transform with vector quantization technique for image data compression.Thecombination cuts down the dimensions of vector coding.The size of the codebook can reasonablybe reduced.This method can reduce the computation complexity and pick up the vector codingprocess.Experiments using image processing system show that this method is very effective inthe field of image data compression. 展开更多
关键词 image processing RECTANGULAR TRANSFORM vector quantization Data compression CODING
下载PDF
A hybrid quantum encoding algorithm of vector quantization for image compression 被引量:4
4
作者 庞朝阳 周正威 郭光灿 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第12期3039-3043,共5页
Many classical encoding algorithms of vector quantization (VQ) of image compression that can obtain global optimal solution have computational complexity O(N). A pure quantum VQ encoding algorithm with probability... Many classical encoding algorithms of vector quantization (VQ) of image compression that can obtain global optimal solution have computational complexity O(N). A pure quantum VQ encoding algorithm with probability of success near 100% has been proposed, that performs operations 45√N times approximately. In this paper, a hybrid quantum VQ encoding algorithm between the classical method and the quantum algorithm is presented. The number of its operations is less than √N for most images, and it is more efficient than the pure quantum algorithm. 展开更多
关键词 vector quantization Grover's algorithm image compression quantum algorithm
下载PDF
DNA Computing with Water Strider Based Vector Quantization for Data Storage Systems
5
作者 A.Arokiaraj Jovith S.Rama Sree +4 位作者 Gudikandhula Narasimha Rao K.Vijaya Kumar Woong Cho Gyanendra Prasad Joshi Sung Won Kim 《Computers, Materials & Continua》 SCIE EI 2023年第3期6429-6444,共16页
The exponential growth of data necessitates an effective data storage scheme,which helps to effectively manage the large quantity of data.To accomplish this,Deoxyribonucleic Acid(DNA)digital data storage process can b... The exponential growth of data necessitates an effective data storage scheme,which helps to effectively manage the large quantity of data.To accomplish this,Deoxyribonucleic Acid(DNA)digital data storage process can be employed,which encodes and decodes binary data to and from synthesized strands of DNA.Vector quantization(VQ)is a commonly employed scheme for image compression and the optimal codebook generation is an effective process to reach maximum compression efficiency.This article introduces a newDNAComputingwithWater StriderAlgorithm based Vector Quantization(DNAC-WSAVQ)technique for Data Storage Systems.The proposed DNAC-WSAVQ technique enables encoding data using DNA computing and then compresses it for effective data storage.Besides,the DNAC-WSAVQ model initially performsDNA encoding on the input images to generate a binary encoded form.In addition,aWater Strider algorithm with Linde-Buzo-Gray(WSA-LBG)model is applied for the compression process and thereby storage area can be considerably minimized.In order to generate optimal codebook for LBG,the WSA is applied to it.The performance validation of the DNAC-WSAVQ model is carried out and the results are inspected under several measures.The comparative study highlighted the improved outcomes of the DNAC-WSAVQ model over the existing methods. 展开更多
关键词 DNA computing data storage image compression vector quantization ws algorithm space saving
下载PDF
A Novel Coding Method Based on Fuzzy Vector Quantization for Noised Image
6
作者 Li Yibing ,Lou Zhe, Jiang Tao & Si Xicai Dept. of Eledronic Eng., Harbin Engineering University 150001, P. R. China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2001年第2期87-91,共5页
In this paper a novel coding method based on fuzzy vector quantization for noised image with Gaussian white-noise pollution is presented. By restraining the high frequency subbands of wavelet image the noise is signif... In this paper a novel coding method based on fuzzy vector quantization for noised image with Gaussian white-noise pollution is presented. By restraining the high frequency subbands of wavelet image the noise is significantly removed and coded with fuzzy vector quantization. The experimental result shows that the method can not only achieve high compression ratio but also remove noise dramatically. 展开更多
关键词 Fuzzy sets Gaussian noise (electronic) image coding image compression Integral equations vector quantization Wavelet transforms White noise
下载PDF
Fast encoding algorithm for vector quantization based on subvector L_2-norm 被引量:1
7
作者 Chen Shanxue Li Fangwei Zhu Weile 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第3期611-617,共7页
A fast encoding algorithm based on the mean square error (MSE) distortion for vector quantization is introduced. The vector, which is effectively constructed with wavelet transform (WT) coefficients of images, can... A fast encoding algorithm based on the mean square error (MSE) distortion for vector quantization is introduced. The vector, which is effectively constructed with wavelet transform (WT) coefficients of images, can simplify the realization of the non-linear interpolated vector quantization (NLIVQ) technique and make the partial distance search (PDS) algorithm more efficient. Utilizing the relationship of vector L2-norm and its Euclidean distance, some conditions of eliminating unnecessary codewords are obtained. Further, using inequality constructed by the subvector L2-norm, more unnecessary codewords are eliminated. During the search process for code, mostly unlikely codewords can be rejected by the proposed algorithm combined with the non-linear interpolated vector quantization technique and the partial distance search technique. The experimental results show that the reduction of computation is outstanding in the encoding time and complexity against the full search method. 展开更多
关键词 image compression fast encoding subvector wavelet transform vector quantization.
下载PDF
A NEW LBG-BASED IMAGE COMPRESSION METHOD USING DCT 被引量:1
8
作者 Jiang Lai Huang Cailing Liao Huilian Ji Zhen 《Journal of Electronics(China)》 2006年第5期783-785,共3页
In this letter, a new Linde-Buzo-Gray (LBG)-based image compression method using Discrete Cosine Transform (DCT) and Vector Quantization (VQ) is proposed. A gray-level image is firstly decomposed into blocks, then eac... In this letter, a new Linde-Buzo-Gray (LBG)-based image compression method using Discrete Cosine Transform (DCT) and Vector Quantization (VQ) is proposed. A gray-level image is firstly decomposed into blocks, then each block is subsequently encoded by a 2D DCT coding scheme. The dimension of vectors as the input of a generalized VQ scheme is reduced. The time of encoding by a generalized VQ is reduced with the introduction of DCT process. The experimental results demonstrate the efficiency of the proposed method. 展开更多
关键词 image compression vector quantization (VQ) Discrete Cosine Transform (DCT) CODEBOOK Linde-Buzo-Gray (LBG)
下载PDF
Optimized Binary Neural Networks for Road Anomaly Detection:A TinyML Approach on Edge Devices
9
作者 Amna Khatoon Weixing Wang +2 位作者 Asad Ullah Limin Li Mengfei Wang 《Computers, Materials & Continua》 SCIE EI 2024年第7期527-546,共20页
Integrating Tiny Machine Learning(TinyML)with edge computing in remotely sensed images enhances the capabilities of road anomaly detection on a broader level.Constrained devices efficiently implement a Binary Neural N... Integrating Tiny Machine Learning(TinyML)with edge computing in remotely sensed images enhances the capabilities of road anomaly detection on a broader level.Constrained devices efficiently implement a Binary Neural Network(BNN)for road feature extraction,utilizing quantization and compression through a pruning strategy.The modifications resulted in a 28-fold decrease in memory usage and a 25%enhancement in inference speed while only experiencing a 2.5%decrease in accuracy.It showcases its superiority over conventional detection algorithms in different road image scenarios.Although constrained by computer resources and training datasets,our results indicate opportunities for future research,demonstrating that quantization and focused optimization can significantly improve machine learning models’accuracy and operational efficiency.ARM Cortex-M0 gives practical feasibility and substantial benefits while deploying our optimized BNN model on this low-power device:Advanced machine learning in edge computing.The analysis work delves into the educational significance of TinyML and its essential function in analyzing road networks using remote sensing,suggesting ways to improve smart city frameworks in road network assessment,traffic management,and autonomous vehicle navigation systems by emphasizing the importance of new technologies for maintaining and safeguarding road networks. 展开更多
关键词 edge computing remote sensing TinyML optimization BNNs road anomaly detection quantization model compression
下载PDF
Fast compression of computer-generated holographic images based on a GPU-accelerated skip-dimension vector quantization method
10
作者 Y.K.Lam W.C.Situ P.W.M.Tsang 《Chinese Optics Letters》 SCIE EI CAS CSCD 2013年第5期28-32,共5页
A method for fast and low bit-rate compression of digital holograms based on a new vector quantization (VQ) method known as the skip-dimension VQ (SDVQ) is proposed. Briefly, a complex hologram is converted into a... A method for fast and low bit-rate compression of digital holograms based on a new vector quantization (VQ) method known as the skip-dimension VQ (SDVQ) is proposed. Briefly, a complex hologram is converted into a real off-axis hologram, and partitioned into a set of image vectors. The image vectors are passed into a graphic processing unit (GPU), and compressed through SDVQ into a set of code indices considerably smaller in data size than the source hologram. Experimental evaluation reveals that our scheme is capable of compressing a digital hologram to a compression ratio of over 500 times, in approximately 20-22 ms. 展开更多
关键词 GPU Fast compression of computer-generated holographic images based on a GPU-accelerated skip-dimension vector quantization method VQ
原文传递
Ghost edge detection based on HED network 被引量:2
11
作者 Shengmei Zhao Yifang Cui +1 位作者 Xing He Le Wang 《Frontiers of Optoelectronics》 EI CSCD 2022年第3期25-33,共9页
In this paper,we present an edge detection scheme based on ghost imaging(GI)with a holistically-nested neural network.The so-called holistically-nested edge detection(HED)network is adopted to combine the fully convol... In this paper,we present an edge detection scheme based on ghost imaging(GI)with a holistically-nested neural network.The so-called holistically-nested edge detection(HED)network is adopted to combine the fully convolutional neural network(CNN)with deep supervision to learn image edges efectively.Simulated data are used to train the HED network,and the unknown object’s edge information is reconstructed from the experimental data.The experiment results show that,when the compression ratio(CR)is 12.5%,this scheme can obtain a high-quality edge information with a sub-Nyquist sampling ratio and has a better performance than those using speckle-shifting GI(SSGI),compressed ghost edge imaging(CGEI)and subpixel-shifted GI(SPSGI).Indeed,the proposed scheme can have a good signal-to-noise ratio performance even if the sub-Nyquist sampling ratio is greater than 5.45%.Since the HED network is trained by numerical simulations before the experiment,this proposed method provides a promising way for achieving edge detection with small measurement times and low time cost. 展开更多
关键词 edge detection Ghost imaging(GI) Holistically-nested neural network compression ratio(CR) Signal-tonoise ratio(SNR)
原文传递
Intelligent Satin Bowerbird Optimizer Based Compression Technique for Remote Sensing Images
12
作者 M.Saravanan J.Jayanthi +4 位作者 U.Sakthi R.Rajkumar Gyanendra Prasad Joshi L.Minh Dang Hyeonjoon Moon 《Computers, Materials & Continua》 SCIE EI 2022年第8期2683-2696,共14页
Due to latest advancements in the field of remote sensing,it becomes easier to acquire high quality images by the use of various satellites along with the sensing components.But the massive quantity of data poses a ch... Due to latest advancements in the field of remote sensing,it becomes easier to acquire high quality images by the use of various satellites along with the sensing components.But the massive quantity of data poses a challenging issue to store and effectively transmit the remote sensing images.Therefore,image compression techniques can be utilized to process remote sensing images.In this aspect,vector quantization(VQ)can be employed for image compression and the widely applied VQ approach is Linde–Buzo–Gray(LBG)which creates a local optimum codebook for image construction.The process of constructing the codebook can be treated as the optimization issue and the metaheuristic algorithms can be utilized for resolving it.With this motivation,this article presents an intelligent satin bowerbird optimizer based compression technique(ISBO-CT)for remote sensing images.The goal of the ISBO-CT technique is to proficiently compress the remote sensing images by the effective design of codebook.Besides,the ISBO-CT technique makes use of satin bowerbird optimizer(SBO)with LBG approach is employed.The design of SBO algorithm for remote sensing image compression depicts the novelty of the work.To showcase the enhanced efficiency of ISBO-CT approach,an extensive range of simulations were applied and the outcomes reported the optimum performance of ISBO-CT technique related to the recent state of art image compression approaches. 展开更多
关键词 Remote sensing images image compression vector quantization sand bowerbird optimizer metaheuristics space savings
下载PDF
Corner-Based Image Alignment using Pyramid Structure with Gradient Vector Similarity
13
作者 Chin-Sheng Chen Kang-Yi Peng +1 位作者 Chien-Liang Huang Chun-Wei Yeh 《Journal of Signal and Information Processing》 2013年第3期114-119,共6页
This paper presents a corner-based image alignment algorithm based on the procedures of corner-based template matching and geometric parameter estimation. This algorithm consists of two stages: 1) training phase, and ... This paper presents a corner-based image alignment algorithm based on the procedures of corner-based template matching and geometric parameter estimation. This algorithm consists of two stages: 1) training phase, and 2) matching phase. In the training phase, a corner detection algorithm is used to extract the corners. These corners are then used to build the pyramid images. In the matching phase, the corners are obtained using the same corner detection algorithm. The similarity measure is then determined by the differences of gradient vector between the corners obtained in the template image and the inspection image, respectively. A parabolic function is further applied to evaluate the geometric relationship between the template and the inspection images. Results show that the corner-based template matching outperforms the original edge-based template matching in efficiency, and both of them are robust against non-liner light changes. The accuracy and precision of the corner-based image alignment are competitive to that of edge-based image alignment under the same environment. In practice, the proposed algorithm demonstrates its precision, efficiency and robustness in image alignment for real world applications. 展开更多
关键词 Corner-Based image Alignment CORNER detection edge-Based TEMPLATE Matching Gradient vector
下载PDF
Detecting Double JPEG Compressed Color Images via an Improved Approach
14
作者 Xiaojie Zhao Xiankui Meng +2 位作者 Ruyong Ren Shaozhang Niu Zhenguang Gao 《Computers, Materials & Continua》 SCIE EI 2023年第4期1765-1781,共17页
Detecting double Joint Photographic Experts Group (JPEG) compressionfor color images is vital in the field of image forensics. In previousresearches, there have been various approaches to detecting double JPEGcompress... Detecting double Joint Photographic Experts Group (JPEG) compressionfor color images is vital in the field of image forensics. In previousresearches, there have been various approaches to detecting double JPEGcompression with different quantization matrices. However, the detectionof double JPEG color images with the same quantization matrix is stilla challenging task. An effective detection approach to extract features isproposed in this paper by combining traditional analysis with ConvolutionalNeural Networks (CNN). On the one hand, the number of nonzero pixels andthe sum of pixel values of color space conversion error are provided with 12-dimensional features through experiments. On the other hand, the roundingerror, the truncation error and the quantization coefficient matrix are used togenerate a total of 128-dimensional features via a specially designed CNN. Insuch aCNN, convolutional layers with fixed kernel of 1×1 and Dropout layersare adopted to prevent overfitting of the model, and an average pooling layeris used to extract local characteristics. In this approach, the Support VectorMachine (SVM) classifier is applied to distinguishwhether a given color imageis primarily or secondarily compressed. The approach is also suitable for thecase when customized needs are considered. The experimental results showthat the proposed approach is more effective than some existing ones whenthe compression quality factors are low. 展开更多
关键词 Color image forensics double JPEG compression detection the same quantization matrix CNN
下载PDF
基于低秩分解和向量量化的深度网络压缩方法
15
作者 王东炜 刘柏辰 +2 位作者 韩志 王艳美 唐延东 《计算机应用》 CSCD 北大核心 2024年第7期1987-1994,共8页
随着人工智能的发展,深度神经网络成为多种模式识别任务中必不可少的工具,由于深度卷积神经网络(CNN)参数量巨大、计算复杂度高,将它部署到计算资源和存储空间受限的边缘计算设备上成为一项挑战。因此,深度网络压缩成为近年来的研究热... 随着人工智能的发展,深度神经网络成为多种模式识别任务中必不可少的工具,由于深度卷积神经网络(CNN)参数量巨大、计算复杂度高,将它部署到计算资源和存储空间受限的边缘计算设备上成为一项挑战。因此,深度网络压缩成为近年来的研究热点。低秩分解与向量量化是深度网络压缩中重要的两个研究分支,其核心思想都是通过找到原网络结构的一种紧凑型表达,从而降低网络参数的冗余程度。通过建立联合压缩框架,提出一种基于低秩分解和向量量化的深度网络压缩方法——可量化的张量分解(QTD)。该方法能够在网络低秩结构的基础上实现进一步的量化,从而得到更大的压缩比。在CIFAR-10数据集上对经典ResNet和该方法进行验证的实验结果表明,QTD能够在准确率仅损失1.71个百分点的情况下,将网络参数量压缩至原来的1%。而在大型数据集ImageNet上把所提方法与基于量化的方法PQF(Permute,Quantize,and Fine-tune)、基于低秩分解的方法TDNR(Tucker Decomposition with Nonlinear Response)和基于剪枝的方法CLIP-Q(Compression Learning by In-parallel Pruning-Quantization)进行比较与分析的实验结果表明,QTD能够在相同压缩范围下实现更好的分类准确率。 展开更多
关键词 卷积神经网络 张量分解 向量量化 模型压缩 图像分类
下载PDF
A New Quality Improving Scheme for VQ Decompressed Images Based on DWT 被引量:1
16
作者 Yung-Chen Chou Ya-Hsin Lo Jaui-Ji Shen 《Journal of Electronic Science and Technology》 CAS 2013年第1期51-57,共7页
The better compression rate can be achieved by the traditional vector quantization (VQ) method, and the quality of the recovered image can also be accepted. But the decompressed image quality can not be promoted eff... The better compression rate can be achieved by the traditional vector quantization (VQ) method, and the quality of the recovered image can also be accepted. But the decompressed image quality can not be promoted efficiently, so how to balance the image compression rate and image recovering quality is an important issue, in this paper, an image is transformed by discrete wavelet transform (DWT) to generate its DWT transformed image which can be compressed by the VQ method further. Besides, we compute the values between the DWT transformed image and decompressed DWT transformed image as the difference matrix which is the adjustable basis of the decompressed image quality. By controlling the deviation of the difference matrix, there can be nearly Iossless compression for the VQ method. Experimental results show that when the number of compressed bits by our method is equal to the number of those bits compressed by the VQ method, the quality of our recovered image is better. Moreover, the proposed method has more compression capability comparing with the VQ scheme. 展开更多
关键词 Difference matrix discrete wavelet transform image compression vector quantization.
下载PDF
ADCTVQ: A New Method for Image Coding and Compressing
17
作者 Zhang Shibin Luo Wei Zhao Debin Li Zhongrong Gao Wen (Department of Computer Science) 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 1990年第3期45-51,共7页
This paper presents a new method for image coding and compressing-ADCTVQ(Adptive Discrete Cosine Transform Vector Quantization). In this method, DCT conforms to visual properties and has an encoding ability which is i... This paper presents a new method for image coding and compressing-ADCTVQ(Adptive Discrete Cosine Transform Vector Quantization). In this method, DCT conforms to visual properties and has an encoding ability which is inferior only to the best transform KLT. Its vector quantization can maintain the minimum quantization distortions and greatly increase the compression ratio. In order to improve compression efficiency, an adaptive strategy of selecting reserved region patterns is applied to preserving the high energy at the same compression ratio. The experiment results show that they are satisfactory at the compression ration ratio if greater than 20. 展开更多
关键词 图像压缩 图像编码 矢量量化 ADCTVQ 压缩速率 余弦变换
下载PDF
基于纹理特征融合的指纹活性检测方法 被引量:2
18
作者 袁程胜 郭强 +2 位作者 李欣亭 孟若涵 周志立 《南京理工大学学报》 CAS CSCD 北大核心 2023年第3期352-358,共7页
针对当前指纹识别系统容易遭受伪造指纹欺骗攻击的问题,提出一种基于纹理特征融合的指纹活性检测算法。通过设计边缘纹理增强(ETE)和对称差分统计(SDS)2种脊线纹理特征描述算子来表示真假指纹的显著性纹理,前者用来提取指纹图像脊线的... 针对当前指纹识别系统容易遭受伪造指纹欺骗攻击的问题,提出一种基于纹理特征融合的指纹活性检测算法。通过设计边缘纹理增强(ETE)和对称差分统计(SDS)2种脊线纹理特征描述算子来表示真假指纹的显著性纹理,前者用来提取指纹图像脊线的方向纹理信息,后者用来描述邻域内脊线的频率纹理信息。首先,利用感兴趣区域(ROI)提取算法对指纹图像进行预处理,以消除指纹图像中背景空白噪声的干扰;然后,利用ETE和SDS分别提取指纹的脊线纹理特征;接着,统计上述2类特征的直方图,描述真假指纹的纹理特征;最后,将生成的特征输入支持向量机(SVM)中进行训练和测试。在LiveDet 2011指纹数据集的测试中,分别使用Biometrika、Italdata、Sagem 3种传感器,且与Best、韦伯局部描述算子(WLD)、局部相位量化(LPQ)和局部二值模式(LBP)4种指纹检测算法进行了比较,该文算法的检测性能优于其余方法,能够完成当前的活性检测任务。LiveDet 2013数据集使用Biometrika、Italdata和Swipe 3种传感器,通过与WLD、不变梯度直方图(HIG)、统一局部二值模式(ULBP)、深度表征结构优化(DRAO)和Winner 5种指纹活性检测方法对比,该文算法的指纹活性检测准确率有一定的提升。 展开更多
关键词 纹理特征融合 指纹活性检测 边缘纹理增强 对称差分统计 指纹图像脊线 邻域内脊线 感兴趣区域提取算法 支持向量机
下载PDF
基于Lab空间颜色量化的卡通画模拟绘制
19
作者 葛照君 管敏鹏 《电视技术》 2023年第5期212-215,共4页
卡通画的模拟绘制具有广泛的应用。为了提升卡通画模拟绘制的效果,通过分析卡通画的绘制特点,确定卡通画模拟绘制的步骤,主要包括图像抽象化、色彩量化、边缘检测以及图像融合,提出基于Lab空间颜色量化算法和双边滤波图像抽象化的卡通... 卡通画的模拟绘制具有广泛的应用。为了提升卡通画模拟绘制的效果,通过分析卡通画的绘制特点,确定卡通画模拟绘制的步骤,主要包括图像抽象化、色彩量化、边缘检测以及图像融合,提出基于Lab空间颜色量化算法和双边滤波图像抽象化的卡通画模拟绘制算法,最后进行边缘提取并与颜色量化后的图像进行融合。从实验效果来看,所提方法有较好的模拟效果。 展开更多
关键词 卡通画模拟绘制 图像抽象化 双边滤波 Lab空间 色彩量化 边缘检测
下载PDF
自动监测装置用温室粉虱和蓟马成虫图像分割识别算法 被引量:28
20
作者 杨信廷 刘蒙蒙 +6 位作者 许建平 赵丽 魏书军 李文勇 陈梅香 陈明 李明 《农业工程学报》 EI CAS CSCD 北大核心 2018年第1期164-170,共7页
为了监测温室黄瓜作物虫害种类、数量变化情况以预测虫害发展趋势,该文以粉虱和蓟马为例,提出了一种基于Prewitt、Canny边缘检测算子分割和SVM(support vector machine)的温室粉虱和蓟马诱虫板的图像识别算法。该方法利用HSI(Hue-Satura... 为了监测温室黄瓜作物虫害种类、数量变化情况以预测虫害发展趋势,该文以粉虱和蓟马为例,提出了一种基于Prewitt、Canny边缘检测算子分割和SVM(support vector machine)的温室粉虱和蓟马诱虫板的图像识别算法。该方法利用HSI(Hue-Saturation-Intensity)颜色空间的I分量与L*a*b*颜色空间的b分量二值图像中害虫目标与背景的高对比性,再分别相应地利用Prewitt算子和Canny算子进行单头害虫边缘分割,再经过形态学处理,最后融合这两幅二值图像完成单头害虫区域的提取。然后提取害虫的5个形态特征(面积、相对面积、周长、复杂度、占空比)及9个颜色特征(Hue-Saturation-Value颜色空间、HSI颜色空间、L*a*b*颜色空间各分量的一阶矩),并对这14个特征参数进行归一化处理,将特征值作为SVM的输入向量,进行温室粉虱和蓟马的诱虫板图像识别。通过分析比较不同向量组合的BP(back propagation)与SVM的害虫识别率、4种不同SVM核函数的害虫识别率,发现颜色特征向量是粉虱和蓟马识别的主成分,且SVM的识别效果优于BP神经网络、线性核函数的SVM分类性能最好且稳定。结果表明:平均识别准确率达到了93.5%,粉虱和蓟马成虫的识别率分别是96.0%和91.0%,能够实现温室害虫的诱虫板图像识别。该研究可以为虫害的监测与预警提供支持,为及时采取正确的防治措施提供重要的理论依据。 展开更多
关键词 图像处理、图像分割 算法 边缘检测 支持向量机 颜色空间 虫害监测
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部