AIM:To select the optimal edge detection methods to identify the corneal surface,and compare three fitting curve equations with Matlab software. METHODS:Fifteen subjects were recruited. The corneal images from optic...AIM:To select the optimal edge detection methods to identify the corneal surface,and compare three fitting curve equations with Matlab software. METHODS:Fifteen subjects were recruited. The corneal images from optical coherence tomography(OCT)were imported into Matlab software. Five edge detection methods(Canny,Log,Prewitt,Roberts,Sobel)were used to identify the corneal surface. Then two manual identifying methods(ginput and getpts)were applied to identify the edge coordinates respectively. The differences among these methods were compared. Binomial curve(y=Ax2+Bx+C),Polynomial curve [p(x)=p1xn+p2x(n-1)+....+pnx+pn+1] and Conic section(Ax2+Bxy+Cy2+Dx+Ey+F=0)were used for curve fitting the corneal surface respectively. The relative merits among three fitting curves were analyzed. Finally,the eccentricity(e)obtained by corneal topography and conic section were compared with paired t-test. RESULTS:Five edge detection algorithms all had continuous coordinates which indicated the edge of the corneal surface. The ordinates of manual identifying were close to the inside of the actual edges. Binomial curve was greatly affected by tilt angle. Polynomial curve was lack of geometrical properties and unstable. Conic section could calculate the tilted symmetry axis,eccentricity,circle center,etc. There were no significant differences between 'e' values by corneal topography and conic section(t=0.9143,P=0.3760 〉0.05).CONCLUSION:It is feasible to simulate the corneal surface with mathematical curve with Matlab software. Edge detection has better repeatability and higher efficiency. The manual identifying approach is an indispensable complement for detection. Polynomial and conic section are both the alternative methods for corneal curve fitting. Conic curve was the optimal choice based on the specific geometrical properties.展开更多
Real-time detection for object size has now become a hot topic in the testing field and image processing is the core algorithm. This paper focuses on the processing and display of the collected dynamic images to achie...Real-time detection for object size has now become a hot topic in the testing field and image processing is the core algorithm. This paper focuses on the processing and display of the collected dynamic images to achieve a real-time image pro- cessing for the moving objects. Firstly, the median filtering, gain calibration, image segmentation, image binarization, cor- ner detection and edge fitting are employed to process the images of the moving objects to make the image close to the real object. Then, the processed images are simultaneously displayed on a real-time basis to make it easier to analyze, understand and identify them, and thus it reduces the computation complexity. Finally, human-computer interaction (HCI)-friendly in- terface based on VC ++ is designed to accomplish the digital logic transform, image processing and real-time display of the objects. The experiment shows that the proposed algorithm and software design have better real-time performance and accu- racy which can meet the industrial needs.展开更多
The digital image inpainting technology based on partial differential equations(PDEs)has become an intensive research topic over the last few years due to the mature theory and prolific numerical algorithms of PDEs.Ho...The digital image inpainting technology based on partial differential equations(PDEs)has become an intensive research topic over the last few years due to the mature theory and prolific numerical algorithms of PDEs.However,PDE based models are not effective when used to inpaint large missing areas of images,such as that produced by object removal.To overcome this problem,in this paper,a two-phase image inpainting method is proposed.First,some edges which cross the damaged regions are located and the missing parts of these edges are fitted by using the cubic spline interpolation.These fitted edges partition the damaged regions into some smaller damaged regions.Then these smaller regions may be inpainted by using classical PDE models.Experiment results show that the inpainting results by using the proposed method are better than those of BSCB model and TV model.展开更多
基金Supported by the National Natural Science Foundation of China(No.81400428)Science and Technology Commission of Shanghai Municipality(No.134119b1600)
文摘AIM:To select the optimal edge detection methods to identify the corneal surface,and compare three fitting curve equations with Matlab software. METHODS:Fifteen subjects were recruited. The corneal images from optical coherence tomography(OCT)were imported into Matlab software. Five edge detection methods(Canny,Log,Prewitt,Roberts,Sobel)were used to identify the corneal surface. Then two manual identifying methods(ginput and getpts)were applied to identify the edge coordinates respectively. The differences among these methods were compared. Binomial curve(y=Ax2+Bx+C),Polynomial curve [p(x)=p1xn+p2x(n-1)+....+pnx+pn+1] and Conic section(Ax2+Bxy+Cy2+Dx+Ey+F=0)were used for curve fitting the corneal surface respectively. The relative merits among three fitting curves were analyzed. Finally,the eccentricity(e)obtained by corneal topography and conic section were compared with paired t-test. RESULTS:Five edge detection algorithms all had continuous coordinates which indicated the edge of the corneal surface. The ordinates of manual identifying were close to the inside of the actual edges. Binomial curve was greatly affected by tilt angle. Polynomial curve was lack of geometrical properties and unstable. Conic section could calculate the tilted symmetry axis,eccentricity,circle center,etc. There were no significant differences between 'e' values by corneal topography and conic section(t=0.9143,P=0.3760 〉0.05).CONCLUSION:It is feasible to simulate the corneal surface with mathematical curve with Matlab software. Edge detection has better repeatability and higher efficiency. The manual identifying approach is an indispensable complement for detection. Polynomial and conic section are both the alternative methods for corneal curve fitting. Conic curve was the optimal choice based on the specific geometrical properties.
基金National Natural Science Foundation of China(No.61302159,61227003,61301259)Natual Science Foundation of Shanxi Province(No.2012021011-2)+2 种基金Specialized Research Fund for the Doctoral Program of Higher Education,China(No.20121420110006)Top Science and Technology Innovation Teams of Higher Learning Institutions of Shanxi Province,ChinaProject Sponsored by Scientific Research for the Returned Overseas Chinese Scholars,Shanxi Province(No.2013-083)
文摘Real-time detection for object size has now become a hot topic in the testing field and image processing is the core algorithm. This paper focuses on the processing and display of the collected dynamic images to achieve a real-time image pro- cessing for the moving objects. Firstly, the median filtering, gain calibration, image segmentation, image binarization, cor- ner detection and edge fitting are employed to process the images of the moving objects to make the image close to the real object. Then, the processed images are simultaneously displayed on a real-time basis to make it easier to analyze, understand and identify them, and thus it reduces the computation complexity. Finally, human-computer interaction (HCI)-friendly in- terface based on VC ++ is designed to accomplish the digital logic transform, image processing and real-time display of the objects. The experiment shows that the proposed algorithm and software design have better real-time performance and accu- racy which can meet the industrial needs.
基金This work was partially supported by NSFC under Grant No.10771036,NSFC under Grant No.11071720Natural Science Foundation of Fujian Province under Grant No.2010J01328.
文摘The digital image inpainting technology based on partial differential equations(PDEs)has become an intensive research topic over the last few years due to the mature theory and prolific numerical algorithms of PDEs.However,PDE based models are not effective when used to inpaint large missing areas of images,such as that produced by object removal.To overcome this problem,in this paper,a two-phase image inpainting method is proposed.First,some edges which cross the damaged regions are located and the missing parts of these edges are fitted by using the cubic spline interpolation.These fitted edges partition the damaged regions into some smaller damaged regions.Then these smaller regions may be inpainted by using classical PDE models.Experiment results show that the inpainting results by using the proposed method are better than those of BSCB model and TV model.