For thin oil rim reservoir with gas cap and edge water, it is helpful to improve the development effect to find out the distribution law of remaining oil in this kind of reservoirs. For this reason, taking the narrow ...For thin oil rim reservoir with gas cap and edge water, it is helpful to improve the development effect to find out the distribution law of remaining oil in this kind of reservoirs. For this reason, taking the narrow oil rim reservoir with gas cap and edge water of Oilfield A in Bohai Sea as a case, the main controlling factors, including reservoir structure, fault, gas cap energy, edge water energy and well pattern, affecting the distribution of residual oil in this kind of reservoir were analyzed by using the data of core, logging, paleogeomorphology and production. Then, the distribution law of remaining oil was summarized. Generally, the remaining oil distribution is mainly potato-shaped or strip-shaped in plane. Vertically, it depends on the energy of gas cap and edge water. For the reservoir with big gas gap and weak edge water, the remaining oil mainly lies in the bottom of oil column. And for the reservoir with small gas gap and strong edge water, the remaining oil mainly locates at the top of oil column. Aiming at different distribution modes of remaining oil, the corresponding potential tapping strategies of horizontal wells are put forward: in the late stage of development, for the reservoir with big gas gap and weak edge water, the remaining oil concentrates at the bottom of the oil column, and the position of horizontal well should be placed at the lower 1/3 to the lower 1/5 of the oil column;for the reservoir with small gas cap and strong edge water, the remaining oil locates at the top of the oil column, and the position of horizontal well should be put at the upper 1/5 to the upper 1/3 of the oil column height, vertically. Based on the study on remaining oil of Oilfield A, a potential tapping strategy of well pattern thickening and vertical position optimization of horizontal well was proposed. This strategy guided the efficient implementation of the comprehensive adjustment plan of the oilfield. Moreover, 18 infill development wells were implemented in Oilfield A, and the average production of the infill wells is 2.1 times that of the surrounding old wells. It is estimated that the ultimate recovery factor of the oilfield will reach 33.9%, which is 2.3% higher than that before infilling wells. This study can be used for reference in the development of similar reservoirs.展开更多
In order to reveal the distribution characteristics of water and salt in the non-irrigated saline wasteland and the growth zone of the windbreaks surrounding the plain reservoir,the groundwater and soil monitoring poi...In order to reveal the distribution characteristics of water and salt in the non-irrigated saline wasteland and the growth zone of the windbreaks surrounding the plain reservoir,the groundwater and soil monitoring points were set up around the south area of Duolang Reservoir in the desert oasis.Monthly groundwater depth monitoring and soil water content and salt content fixed-point sampling for a period of 2 years were conducted.The results showed that the groundwater depth of salt wasteland in the area around the reservoir area changed slightly during the monitoring period of 2 years,and the average is 1.28 m.The soil moisture content increased with the increase of soil depth,and soil water content of 60-100 cm was larger than that of other soil layers.The salt content of the soil in the salt wasteland varied between 0.48 g/kg and8.86 g/kg in the two years,and the total salt content of different soil decreased with the increase of soil depth.The soil salt content changed greatly in 0-40 cm soil layers,with significant salt accumulation phenomenon.The soil salt content of windbreaks was significantly lower than that of the natural ecological forest.展开更多
The BZ 34-1 oilfield is a typical gas cap edge water reservoir in the Bohai oilfield. The main characteristics of the oilfield were multi-phase sand body stacking and the sand body was composed of three parts: gas cap...The BZ 34-1 oilfield is a typical gas cap edge water reservoir in the Bohai oilfield. The main characteristics of the oilfield were multi-phase sand body stacking and the sand body was composed of three parts: gas cap, oil reservoir, and edge water. The actual production site results show that the permeability difference of multi-layer sand bodies has a serious impact on the development effect. This article establishes a typical reservoir model numerical model based on the total recovery degree of the reservoir and the recovery degree of each layer, and analyzes the impact of permeability gradient. As the permeability gradient increases, the total recovery degree of all four well patterns decreases, and the total recovery degree gradually decreases. The recovery degree of low permeability layers gradually decreases, and the recovery degree of high permeability layers gradually increases. As the permeability gradient increases, the degree of recovery gradually decreases under different water contents. As the permeability gradient increases, the reduction rate of remaining oil saturation in low permeability layers is slower, while the reduction rate of remaining oil saturation in high permeability layers was faster. By analyzing the impact of permeability gradient on the development effect of oil fields, we could further deepen our understanding of gas cap edge water reservoirs and guide the development of this type of oil field.展开更多
The Triassic massive sandstone reservoir in the Tahe oilfield has a strong bottom-water drive and is characterized by great burial depth,high temperature and salinity,a thin pay zone,and strong heterogeneity.At presen...The Triassic massive sandstone reservoir in the Tahe oilfield has a strong bottom-water drive and is characterized by great burial depth,high temperature and salinity,a thin pay zone,and strong heterogeneity.At present,the water-cut is high in each block within the reservoir;some wells are at an ultrahigh water-cut stage.A lack of effective measures to control water-cut rise and stabilize oil production have necessitated the application of enhanced oil recovery(EOR)technology.This paper investigates the development and technological advances for oil reservoirs with strong edge/bottom-water drive globally,and compares their application to reservoirs with characteristics similar to the Tahe oilfield.Among the technological advances,gas injection from the top and along the direction of structural dip has been used to optimize the flow field in a typical bottom-water drive reservoir.Bottom-water coning is restrained by gas injection-assisted water control.In addition,increasing the lateral driving pressure differential improves the plane sweep efficiency which enhances oil recovery in turn.Gas injection technology in combination with technological measures like channeling prevention and blocking,and water plugging and profile control,can achieve better results in reservoir development.Gas flooding tests in the Tahe oilfield are of great significance to identifying which EOR technology is the most effective and has the potential of large-scale application for improving development of deep reservoirs with a strong bottomwater drive.展开更多
For the ultra-high water-cut reservoirs,after long-term water injection exploitation,the physical properties of the reservoir change and the heterogeneity of the reservoir becomes increasingly severe,which further agg...For the ultra-high water-cut reservoirs,after long-term water injection exploitation,the physical properties of the reservoir change and the heterogeneity of the reservoir becomes increasingly severe,which further aggravates the spatial difference of the flow field.In this study,the displacement experiments were employed to investigate the variations in core permeability,porosity,and relative permeability after a large amount of water injection.A relative permeability endpoint model was proposed by utilizing the alternating conditional expectation(ACE)transformation to describe the variation in relative permeability based on the experimental data.Based on the time dependent models for permeability and relative permeability,the traditional oil-water two-phase model was improved and discretized using the mimetic finite difference method(MFD).The two cases were launched to confirm the validation of the proposed model.The impact of time-varying physical features on reservoir production performance was studied in a real water flooding reservoir.The experimental results indicate that the overall relative permeability curve shifts to the right as water injection increases.This shift corresponds to a transition towards a more hydrophilic wettability and a decrease in residual oil saturation.The endpoint model demonstrates excellent accuracy and can be applied to time-varying simulations of reservoir physics.The impact of variations in permeability and relative permeability on the reservoir production performance yields two distinct outcomes.The time-varying permeability of the reservoir results in intensified water channeling and poor development effects.On the other hand,the time-varying relative permeability enhances the oil phase seepage capacity,facilitating oil displacement.The comprehensive time-varying behavior is the result of the combined influence of these two parameters,which closely resemble the actual conditions observed in oil field exploitation.The time-varying simulation technique of reservoir physical properties proposed in this paper can continuously and stably characterize the dynamic changes of reservoir physical properties during water drive development.This approach ensures the reliability of the simulation results regarding residual oil distribution.展开更多
The segmented water control technology for bottom water reservoirs can effectively delay the entry of bottom water and adjust the production profile.To clarify the impact of different methods on horizontal well produc...The segmented water control technology for bottom water reservoirs can effectively delay the entry of bottom water and adjust the production profile.To clarify the impact of different methods on horizontal well production with different reservoir conditions and to provide theoretical support for the scientific selection of methods for bottom water reservoirs,a numerical simulation method is presented in this study,which is able to deal with wellbore reservoir coupling under screen tube,perforation,and ICD(Inflow Control Device)completion.Assuming the geological characteristics of the bottom-water conglomerate reservoir in the Triassic Formation of the Tahe Block 9 as a test case,the three aforementioned completion methods are tested to predict the transient production characteristics.The impact of completion parameters,reservoir permeability,bottom-water energy,and individual well control on the time to encounter water in horizontal wells(during a water-free production period)is discussed.A boundary chart for the selection of completion methods is introduced accordingly.The results show that the optimized ICD completion development effect for heterogeneous reservoirs is the best,followed by optimized perforation completion.Permeability is the main factor affecting the performances of completion methods,while bottom water energy and single well controlled reserves have a scarce impact.The average permeability of the reservoir is less than 500 mD,and ICD has the best water control effect.If the permeability is greater than 500 mD,the water control effect of perforation completion becomes a better option.展开更多
Laboratory filtration experiments are employed to investigate effective well killing while minimizing its impacts on surrounding rocks.The novelty of this experimental study lies in the prolonged exposure of rock samp...Laboratory filtration experiments are employed to investigate effective well killing while minimizing its impacts on surrounding rocks.The novelty of this experimental study lies in the prolonged exposure of rock samples to the killing fluid for seven days,corresponding to the average duration of well workovers in the oilfields in Perm Krai,Russia.Our findings indicate that critical factors influencing the interactions between rocks and the killing fluid include the chemical composition of the killing fluid,the mineralogical composition of the carbonate rocks,reservoir pressure and temperature,and the contact time.Petrophysical analyses using multi-scale X-ray computed tomography,field emission scanning electron microscopy,and X-ray diffraction were conducted on samples both before and after the well killing simulation.The experiments were performed using real samples of cores,crude oil,and the killing fluid.The results from this study indicate that low-mineralized water(practically fresh water)is a carbonate rock solvent.Such water causes the dissolution of rock components,the formation of new calcite crystals and amoeba-like secretions,and the migration of small particles(clay,quartz,and carbonates).The formation of deep channels was also recorded.The assessment reveals that the change in the pH of the killing fluid indicates that the observed mineral reactions were caused by carbonate dissolution.These combined phenomena led to a decrease in the total number of voids in the core samples,which was 25%on average,predominantly among voids measuring between 45 and 70μm in size.The change in the pore distribution in the bulk of the samples resulted in decreases in porosity of 1.8%and permeability of 67.0%in the studied core samples.The results from this study indicate the unsuitability of low-mineralized water as a well killing fluid in carbonate reservoirs.The composition of the killing fluid should be optimized,for example,in terms of the ionic composition of water,which we intend to investigate in future research.展开更多
A numerical model of hydraulic fracture propagation is introduced for a representative reservoir(Yuanba continental tight sandstone gas reservoir in Northeast Sichuan).Different parameters are considered,i.e.,the inte...A numerical model of hydraulic fracture propagation is introduced for a representative reservoir(Yuanba continental tight sandstone gas reservoir in Northeast Sichuan).Different parameters are considered,i.e.,the interlayer stress difference,the fracturing discharge rate and the fracturing fluid viscosity.The results show that these factors affect the gas and water production by influencing the fracture size.The interlayer stress difference can effectively control the fracture height.The greater the stress difference,the smaller the dimensionless reconstruction volume of the reservoir,while the flowback rate and gas production are lower.A large displacement fracturing construction increases the fracture-forming efficiency and expands the fracture size.The larger the displacement of fracturing construction,the larger the dimensionless reconstruction volume of the reservoir,and the higher the fracture-forming efficiency of fracturing fluid,the flowback rate,and the gas production.Low viscosity fracturing fluid is suitable for long fractures,while high viscosity fracturing fluid is suitable for wide fractures.With an increase in the fracturing fluid viscosity,the dimensionless reconstruction volume and flowback rate of the reservoir display a non-monotonic behavior,however,their changes are relatively small.展开更多
Tight gas reservoirs with mobile water exhibit multi-phase flow and high stress sensitivity.Accurately analyzing the reservoir and well parameters using conventional single-phase rate transient analysis methods proves...Tight gas reservoirs with mobile water exhibit multi-phase flow and high stress sensitivity.Accurately analyzing the reservoir and well parameters using conventional single-phase rate transient analysis methods proves challenging.This study introduces novel rate transient analysis methods incorporating evaluation processes based on the conventional flowing material balance method and the Blasingame type-curve method to examine fractured gas wells producing water.By positing a gas-water two-phase equivalent homogenous phase that considers characteristics of mobile water,gas,and high stress sensitivity,the conventional single-phase rate transient analysis methods can be applied by integrating the phase's characteristics and defining the phase's normalized parameters and material balance pseudotime.The rate transient analysis methods based on the equivalent homogenous phase can be used to quantitatively assess the parameters of wells and gas reservoirs,such as original gas-in-place,fracture half-length,reservoir permeability,and well drainage radius.This facilitates the analysis of production dynamics of fractured wells and well-controlled areas,subsequently aiding in locating residual gas and guiding the configuration of well patterns.The specific evaluation processes are detailed.Additionally,a numerical simulation mechanism model was constructed to verify the reliability of the developed methods.The methods introduced have been successfully implemented in field water-producing gas wells within tight gas reservoirs containing mobile water.展开更多
The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir wit...The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t.展开更多
Soil and water loss has been a major environmental problem in the Danjiangkou Reservoir Region.A study of 14°sloping farmland was performed on impact of different contour hedgerows on runoff,losses of soil and nu...Soil and water loss has been a major environmental problem in the Danjiangkou Reservoir Region.A study of 14°sloping farmland was performed on impact of different contour hedgerows on runoff,losses of soil and nutrients during 2008 and 2011,with five treatments and three replications.The winter wheat and summer maize were used as the test crops.Treatments consisted of four hedgerows:Amorpha(Amorpha fruticosa L.),Honeysuckle(Lonicera japonica Thunb.),Day-lily flower(Hemerocallis citrina Baroni.),and Sabaigrass(Eulaliopsis binata),and a control without hedgerow.Result showed that the runoff under the control treatment was much higher than that of hedgerows.Amorpha could reduce the runoff by 35.2%compared with the control.Soil losses in four hedgerows showed significant reduction in four years(e.g.,Amorpha:78.3%;Honeysuckle:77.1%).Nutrient losses in winter were much higher than that in summer,especially total nitrogen,total phosphorus and total potassium,even though there was an abundant precipitation in summer.Hedgerows greatly affected the soil and nutrient losses on slopping farmland compared with the control treatment,especially Amorpha treatment.The present study found that the Amorpha could be used as the hedgerow species for reducing soil and water loss in the Danjiangkou Reservoir Region.展开更多
On the basis of the data obtained from the comprehensive Kuroshio surveys in 1987-1988,this paper analyses the oceanographic characteristics in the area (125°-130° E,27°-31° N) of the continental s...On the basis of the data obtained from the comprehensive Kuroshio surveys in 1987-1988,this paper analyses the oceanographic characteristics in the area (125°-130° E,27°-31° N) of the continental shelf edge of the East China Sea (E. C. S. ) and its adjacent waters and discusses the effects of the Kuroshio front,thermocline and upwelling of the Kuroshio subsurface water on the distribution of standing stock of phytoplankton (chlorophyll-a). The distribution of high content of chlorophylly-a has been detected at 20-50 in depth in the water body on the left side of the Kuroshio front in the continental shelf edge waters of the E. C. S. The high content of chlorophyll-a spreads from the shelf area to the Kuroshio area in the form of a tongue and connects with the maximum layer of subsurface chlorophyll-a of the Kuroshio and pelagic sea. The author considers that the formation of the distribution of high content chlorophyll-a in this area results from the bottom topography and oceanic environment and there are close correlations between the high content of chlorophyll-a and the light-nutrient environment.展开更多
Based on the meteorological data from 33 stations of Three Gorges Reservoir from 1960 to 2008,climate yield of rice,corn and winter wheat and the changes of climatic potential productivity after water storage in Three...Based on the meteorological data from 33 stations of Three Gorges Reservoir from 1960 to 2008,climate yield of rice,corn and winter wheat and the changes of climatic potential productivity after water storage in Three Gorges Reservoir were calculated by the dynamic statistic model of crop growth.The results showed that the temperature in Three Gorges Reservoir was fluctuant decreased before late 1980s,and warmed rapidly after the late 1980s.The precipitation had little change before the late 1990s and had a slight decrease after the late 1990s.Sunshine hours were more in 1960s and 1970s,and then it changed little after 1980s.After water storage,the temperature increased in Three Gorges Reservoir as a whole.The precipitation decreased in the south of Three Gorges Reservoir,while it increased in the northwest of Three Gorges Reservoir.The sunshine hours were reduced except that in the vicinity of Dianjiang.After water storage,climatic potential productivity of rice decreased in the northwest and the northeast,while it increased in the south of Three Gorges Reservoir.The climatic potential productivity of corn decreased in the northeast and the southwest,but increased in the rest of Three Gorges Reservoir.The climatic potential productivity of winter wheat increased almost in total.展开更多
Statistical work and analysis were made based on data of monitored wa- ter quality data in Hedi Reservoir during 2000-2010 and the results show that the content of nutritive salt was higher and water was moderate or l...Statistical work and analysis were made based on data of monitored wa- ter quality data in Hedi Reservoir during 2000-2010 and the results show that the content of nutritive salt was higher and water was moderate or light eutrophication. Based on status quo and practical survey research of the Reservoir, the causes for eutrophication deterioration were analyzed and countermeasures were proposed, providing scientific references for sustainable development of Hedi Reservoir.展开更多
The dynamics of red edge parameters at different growth stages of wheat canopy was studied. The red edge position moved to the longer wavelength from erecting stage to heading stage, and returned to the original wavel...The dynamics of red edge parameters at different growth stages of wheat canopy was studied. The red edge position moved to the longer wavelength from erecting stage to heading stage, and returned to the original wavelength direction from grain-filling stage to maturity stage. The leaf total nitrogen content (LTN) is positively related to red edge amplitude (d λ red) and NIR platform amplitude (d λNIRP) and the correlation coefficient improved as growth stage extended. The chlorophyll content (TChl) is negatively related to d λ red from erecting stage to the elongation stage, and positively related to d λ red from heading stage to milky maturity stage. TChl is also positively related to d λNIRP. The leaf area index (LAI) is positively related to d λ red and d λNIRP, and the correlation coefficient improved as growth stage extended. It was concluded that d λ red and d λNIRP can be used as the indicators of winter wheat growth state, and guide the fertilization and irrigation decision making. The λNIRF is suitable for derivation of LTN, the d λ red for TChl, and the d λ red or d λNIRP for LAI.展开更多
The water quality in the Danjiangkou Reservoir has attracted considerable attention from the Chinese public and government since the announcement of the Middle Route of the South to North Water Diversion Project (SN...The water quality in the Danjiangkou Reservoir has attracted considerable attention from the Chinese public and government since the announcement of the Middle Route of the South to North Water Diversion Project (SNWDP), which commenced transferring water in 2014. Integrated research on the evaluation, prediction, and protection of water quality in the Danjiangkou Reservoir was carried out in this study in order to improve environmental management. Based on 120 water samples, wherein 17 water quality indices were measured at 20 monitoring sites, a single factor evaluation method was used to evaluate the current status of water quality. The results show that the main indices influencing the water quality in the Danjiangkou Reservoir are total phosphorus (TP), permanganate index (CODM,), dissolved oxygen (DO), and five-day biochemical oxygen demand (BODs), and the concentrations of TP, BODs, ammonia nitrogen (NH3--N), CODM,, DO, and anionic surfactant (Surfa) do not reach the specified standard levels in the tributaries. Seasonal Mann--Kendall tests indicated that the CODMn concentration shows a highly significant increasing trend, and the TP concentration shows a significant increasing trend in the Danjiangkou Reservoir. The distribution of the main water quality indices in the Danjiangkou Reservoir was predicted using a two-dimensional water quality numerical model, and showed that the sphere of influence from the tributaries can spread across half of the Han Reservoir if the pollutants are not controlled. Cluster analysis (CA) results suggest that the Shending River is heavily polluted, that the Jianghe, Sihe, and Jianhe rivers are moderately polluted, and that they should be the focus of environmental remediation.展开更多
The Sanxia Reservoir on the Changjiang River stored water from 1 to 10 June and from 25 October to 5 November in 2003, elevating the water level to 135 and 139 m above mean sea level at the dam, respectively. A monthl...The Sanxia Reservoir on the Changjiang River stored water from 1 to 10 June and from 25 October to 5 November in 2003, elevating the water level to 135 and 139 m above mean sea level at the dam, respectively. A monthly dataset of water discharge, suspended sediment concentration (SSC) and sediment load of the Changjiang River from 1953 to 2003 measured at the Datong Hydrological Gauging Station of the downstreammost Changjiang River was mainly used to examine the Changjiang River sediment delivering into the sea in 2003 in response to the Sanxia Reservoir water storages in the same year. The results show that (1) compared with those in 2002, 2001, and the multi-yearly (1953-2000) average, both annual SSC and sediment load at Datong in 2003 were markedly reduced, and they were even smaller than the multi-yearly (1953-2000) minimum, although the annual runoff in 2003 did not change largely; and (2) compared with those in the corresponding months in 2002, 2001 and the multi-monthly average from 1953 to 2000, monthly SSC and sediment load at Datong both in June and November of 2003 were also markedly reduced, and those in June 2003 were even smaller than the multi-monthly minimum from 1953 to 2000. These may indicate that sediment sedimentation in the Sanxia Reservoir resulting from the Sanxia Reservoir water storage should be the main cause of the decreased annual and monthly SSC and sediment load of the Changjiang River into the sea in 2003. Besides, it seems that the Sanxia Reservoir water storage in the early June (flood season) of 2003 had more impacts on the decreased monthly SSC into the sea than that in the late October and early November (approximately non-flood season) of 2003.展开更多
The similarity criterion for water flooding reservoir flows is concerned with in the present paper. When finding out all the dimensionless variables governing this kind of flow, their physical meanings are subsequentl...The similarity criterion for water flooding reservoir flows is concerned with in the present paper. When finding out all the dimensionless variables governing this kind of flow, their physical meanings are subsequently elucidated. Then, a numerical approach of sensitivity analysis is adopted to quantify their corresponding dominance degree among the similarity parameters. In this way, we may finally identify major scaling law in different parameter range and demonstrate the respective effects of viscosity, permeability and injection rate.展开更多
One of the water source areas of the South-to-North Water Diversion Project is the Danjiangkou Reservoir (DJKR). To understand seasonal variation in phytoplankton composition, abundance and distribution in the DJKR ...One of the water source areas of the South-to-North Water Diversion Project is the Danjiangkou Reservoir (DJKR). To understand seasonal variation in phytoplankton composition, abundance and distribution in the DJKR area before water diversion, as well as to estimate potential risks of water quality after water diversion, we conducted an investigation on phytoplankton in the DJKR from August 2008 to May 2009. The investigation included 10 sampling sites, each with four depths of 0.5, 5, 10, and 20 m. In this study, 117 taxa belonging to 76 genera were identified, consisting of diatoms (39 taxa), green algae (47 taxa), blue-green algae (19 taxa), and others (12 taxa). Annual average phytoplankton abundance was 2.01×10^6 ind./L, and the highest value was 14.72 ×10^6 ind/L (at site 3 in August 2008). Phytoplankton abundance in front of the Danjiangkou Dam (DJKD) was higher than that of the Danjiang Reservoir Basin. Phytoplankton distribution showed a vertical declining trend from 0.5 m to 20 m at most sites in August 2008 (especially at sites of 1, 2, 4 and 10), but no distinct pattern in other sampling months. In December 2008 and March 2009, Stephanodiseus sp. was the most abundant species, amounting to 55.23% and 72.34%, respectively. We propose that high abundance ofStephanodiscus sp. may have contributed greatly to the frequent occurrence of Stephanodiscus sp. blooms in middle-low reaches of the Hanjiang River during the early spring of 2009. In comparison with previous studies conducted from 1992 to 2006, annual average phytoplankton density, green algae and blue-green algae species, as well as major nutrient concentrations increased, while phytoplankton diversity indices declined. This indicates a gradual decline in water quality. More research should be conducted and countermeasures taken to prevent further deterioration of water quality in the DJKR.展开更多
文摘For thin oil rim reservoir with gas cap and edge water, it is helpful to improve the development effect to find out the distribution law of remaining oil in this kind of reservoirs. For this reason, taking the narrow oil rim reservoir with gas cap and edge water of Oilfield A in Bohai Sea as a case, the main controlling factors, including reservoir structure, fault, gas cap energy, edge water energy and well pattern, affecting the distribution of residual oil in this kind of reservoir were analyzed by using the data of core, logging, paleogeomorphology and production. Then, the distribution law of remaining oil was summarized. Generally, the remaining oil distribution is mainly potato-shaped or strip-shaped in plane. Vertically, it depends on the energy of gas cap and edge water. For the reservoir with big gas gap and weak edge water, the remaining oil mainly lies in the bottom of oil column. And for the reservoir with small gas gap and strong edge water, the remaining oil mainly locates at the top of oil column. Aiming at different distribution modes of remaining oil, the corresponding potential tapping strategies of horizontal wells are put forward: in the late stage of development, for the reservoir with big gas gap and weak edge water, the remaining oil concentrates at the bottom of the oil column, and the position of horizontal well should be placed at the lower 1/3 to the lower 1/5 of the oil column;for the reservoir with small gas cap and strong edge water, the remaining oil locates at the top of the oil column, and the position of horizontal well should be put at the upper 1/5 to the upper 1/3 of the oil column height, vertically. Based on the study on remaining oil of Oilfield A, a potential tapping strategy of well pattern thickening and vertical position optimization of horizontal well was proposed. This strategy guided the efficient implementation of the comprehensive adjustment plan of the oilfield. Moreover, 18 infill development wells were implemented in Oilfield A, and the average production of the infill wells is 2.1 times that of the surrounding old wells. It is estimated that the ultimate recovery factor of the oilfield will reach 33.9%, which is 2.3% higher than that before infilling wells. This study can be used for reference in the development of similar reservoirs.
基金Supported by the Master Project of President Foundation in Tarim University(TDZKSSZD201404)
文摘In order to reveal the distribution characteristics of water and salt in the non-irrigated saline wasteland and the growth zone of the windbreaks surrounding the plain reservoir,the groundwater and soil monitoring points were set up around the south area of Duolang Reservoir in the desert oasis.Monthly groundwater depth monitoring and soil water content and salt content fixed-point sampling for a period of 2 years were conducted.The results showed that the groundwater depth of salt wasteland in the area around the reservoir area changed slightly during the monitoring period of 2 years,and the average is 1.28 m.The soil moisture content increased with the increase of soil depth,and soil water content of 60-100 cm was larger than that of other soil layers.The salt content of the soil in the salt wasteland varied between 0.48 g/kg and8.86 g/kg in the two years,and the total salt content of different soil decreased with the increase of soil depth.The soil salt content changed greatly in 0-40 cm soil layers,with significant salt accumulation phenomenon.The soil salt content of windbreaks was significantly lower than that of the natural ecological forest.
文摘The BZ 34-1 oilfield is a typical gas cap edge water reservoir in the Bohai oilfield. The main characteristics of the oilfield were multi-phase sand body stacking and the sand body was composed of three parts: gas cap, oil reservoir, and edge water. The actual production site results show that the permeability difference of multi-layer sand bodies has a serious impact on the development effect. This article establishes a typical reservoir model numerical model based on the total recovery degree of the reservoir and the recovery degree of each layer, and analyzes the impact of permeability gradient. As the permeability gradient increases, the total recovery degree of all four well patterns decreases, and the total recovery degree gradually decreases. The recovery degree of low permeability layers gradually decreases, and the recovery degree of high permeability layers gradually increases. As the permeability gradient increases, the degree of recovery gradually decreases under different water contents. As the permeability gradient increases, the reduction rate of remaining oil saturation in low permeability layers is slower, while the reduction rate of remaining oil saturation in high permeability layers was faster. By analyzing the impact of permeability gradient on the development effect of oil fields, we could further deepen our understanding of gas cap edge water reservoirs and guide the development of this type of oil field.
文摘The Triassic massive sandstone reservoir in the Tahe oilfield has a strong bottom-water drive and is characterized by great burial depth,high temperature and salinity,a thin pay zone,and strong heterogeneity.At present,the water-cut is high in each block within the reservoir;some wells are at an ultrahigh water-cut stage.A lack of effective measures to control water-cut rise and stabilize oil production have necessitated the application of enhanced oil recovery(EOR)technology.This paper investigates the development and technological advances for oil reservoirs with strong edge/bottom-water drive globally,and compares their application to reservoirs with characteristics similar to the Tahe oilfield.Among the technological advances,gas injection from the top and along the direction of structural dip has been used to optimize the flow field in a typical bottom-water drive reservoir.Bottom-water coning is restrained by gas injection-assisted water control.In addition,increasing the lateral driving pressure differential improves the plane sweep efficiency which enhances oil recovery in turn.Gas injection technology in combination with technological measures like channeling prevention and blocking,and water plugging and profile control,can achieve better results in reservoir development.Gas flooding tests in the Tahe oilfield are of great significance to identifying which EOR technology is the most effective and has the potential of large-scale application for improving development of deep reservoirs with a strong bottomwater drive.
基金supported by Research project of Shengli Oifield Exploration and Development Research Institute (Grant No.30200018-21-ZC0613-0125)。
文摘For the ultra-high water-cut reservoirs,after long-term water injection exploitation,the physical properties of the reservoir change and the heterogeneity of the reservoir becomes increasingly severe,which further aggravates the spatial difference of the flow field.In this study,the displacement experiments were employed to investigate the variations in core permeability,porosity,and relative permeability after a large amount of water injection.A relative permeability endpoint model was proposed by utilizing the alternating conditional expectation(ACE)transformation to describe the variation in relative permeability based on the experimental data.Based on the time dependent models for permeability and relative permeability,the traditional oil-water two-phase model was improved and discretized using the mimetic finite difference method(MFD).The two cases were launched to confirm the validation of the proposed model.The impact of time-varying physical features on reservoir production performance was studied in a real water flooding reservoir.The experimental results indicate that the overall relative permeability curve shifts to the right as water injection increases.This shift corresponds to a transition towards a more hydrophilic wettability and a decrease in residual oil saturation.The endpoint model demonstrates excellent accuracy and can be applied to time-varying simulations of reservoir physics.The impact of variations in permeability and relative permeability on the reservoir production performance yields two distinct outcomes.The time-varying permeability of the reservoir results in intensified water channeling and poor development effects.On the other hand,the time-varying relative permeability enhances the oil phase seepage capacity,facilitating oil displacement.The comprehensive time-varying behavior is the result of the combined influence of these two parameters,which closely resemble the actual conditions observed in oil field exploitation.The time-varying simulation technique of reservoir physical properties proposed in this paper can continuously and stably characterize the dynamic changes of reservoir physical properties during water drive development.This approach ensures the reliability of the simulation results regarding residual oil distribution.
文摘The segmented water control technology for bottom water reservoirs can effectively delay the entry of bottom water and adjust the production profile.To clarify the impact of different methods on horizontal well production with different reservoir conditions and to provide theoretical support for the scientific selection of methods for bottom water reservoirs,a numerical simulation method is presented in this study,which is able to deal with wellbore reservoir coupling under screen tube,perforation,and ICD(Inflow Control Device)completion.Assuming the geological characteristics of the bottom-water conglomerate reservoir in the Triassic Formation of the Tahe Block 9 as a test case,the three aforementioned completion methods are tested to predict the transient production characteristics.The impact of completion parameters,reservoir permeability,bottom-water energy,and individual well control on the time to encounter water in horizontal wells(during a water-free production period)is discussed.A boundary chart for the selection of completion methods is introduced accordingly.The results show that the optimized ICD completion development effect for heterogeneous reservoirs is the best,followed by optimized perforation completion.Permeability is the main factor affecting the performances of completion methods,while bottom water energy and single well controlled reserves have a scarce impact.The average permeability of the reservoir is less than 500 mD,and ICD has the best water control effect.If the permeability is greater than 500 mD,the water control effect of perforation completion becomes a better option.
基金funded by the Ministry of Science and Higher Education of the Russian Federation(FSNM-2024-0005).
文摘Laboratory filtration experiments are employed to investigate effective well killing while minimizing its impacts on surrounding rocks.The novelty of this experimental study lies in the prolonged exposure of rock samples to the killing fluid for seven days,corresponding to the average duration of well workovers in the oilfields in Perm Krai,Russia.Our findings indicate that critical factors influencing the interactions between rocks and the killing fluid include the chemical composition of the killing fluid,the mineralogical composition of the carbonate rocks,reservoir pressure and temperature,and the contact time.Petrophysical analyses using multi-scale X-ray computed tomography,field emission scanning electron microscopy,and X-ray diffraction were conducted on samples both before and after the well killing simulation.The experiments were performed using real samples of cores,crude oil,and the killing fluid.The results from this study indicate that low-mineralized water(practically fresh water)is a carbonate rock solvent.Such water causes the dissolution of rock components,the formation of new calcite crystals and amoeba-like secretions,and the migration of small particles(clay,quartz,and carbonates).The formation of deep channels was also recorded.The assessment reveals that the change in the pH of the killing fluid indicates that the observed mineral reactions were caused by carbonate dissolution.These combined phenomena led to a decrease in the total number of voids in the core samples,which was 25%on average,predominantly among voids measuring between 45 and 70μm in size.The change in the pore distribution in the bulk of the samples resulted in decreases in porosity of 1.8%and permeability of 67.0%in the studied core samples.The results from this study indicate the unsuitability of low-mineralized water as a well killing fluid in carbonate reservoirs.The composition of the killing fluid should be optimized,for example,in terms of the ionic composition of water,which we intend to investigate in future research.
文摘A numerical model of hydraulic fracture propagation is introduced for a representative reservoir(Yuanba continental tight sandstone gas reservoir in Northeast Sichuan).Different parameters are considered,i.e.,the interlayer stress difference,the fracturing discharge rate and the fracturing fluid viscosity.The results show that these factors affect the gas and water production by influencing the fracture size.The interlayer stress difference can effectively control the fracture height.The greater the stress difference,the smaller the dimensionless reconstruction volume of the reservoir,while the flowback rate and gas production are lower.A large displacement fracturing construction increases the fracture-forming efficiency and expands the fracture size.The larger the displacement of fracturing construction,the larger the dimensionless reconstruction volume of the reservoir,and the higher the fracture-forming efficiency of fracturing fluid,the flowback rate,and the gas production.Low viscosity fracturing fluid is suitable for long fractures,while high viscosity fracturing fluid is suitable for wide fractures.With an increase in the fracturing fluid viscosity,the dimensionless reconstruction volume and flowback rate of the reservoir display a non-monotonic behavior,however,their changes are relatively small.
文摘Tight gas reservoirs with mobile water exhibit multi-phase flow and high stress sensitivity.Accurately analyzing the reservoir and well parameters using conventional single-phase rate transient analysis methods proves challenging.This study introduces novel rate transient analysis methods incorporating evaluation processes based on the conventional flowing material balance method and the Blasingame type-curve method to examine fractured gas wells producing water.By positing a gas-water two-phase equivalent homogenous phase that considers characteristics of mobile water,gas,and high stress sensitivity,the conventional single-phase rate transient analysis methods can be applied by integrating the phase's characteristics and defining the phase's normalized parameters and material balance pseudotime.The rate transient analysis methods based on the equivalent homogenous phase can be used to quantitatively assess the parameters of wells and gas reservoirs,such as original gas-in-place,fracture half-length,reservoir permeability,and well drainage radius.This facilitates the analysis of production dynamics of fractured wells and well-controlled areas,subsequently aiding in locating residual gas and guiding the configuration of well patterns.The specific evaluation processes are detailed.Additionally,a numerical simulation mechanism model was constructed to verify the reliability of the developed methods.The methods introduced have been successfully implemented in field water-producing gas wells within tight gas reservoirs containing mobile water.
文摘The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t.
文摘Soil and water loss has been a major environmental problem in the Danjiangkou Reservoir Region.A study of 14°sloping farmland was performed on impact of different contour hedgerows on runoff,losses of soil and nutrients during 2008 and 2011,with five treatments and three replications.The winter wheat and summer maize were used as the test crops.Treatments consisted of four hedgerows:Amorpha(Amorpha fruticosa L.),Honeysuckle(Lonicera japonica Thunb.),Day-lily flower(Hemerocallis citrina Baroni.),and Sabaigrass(Eulaliopsis binata),and a control without hedgerow.Result showed that the runoff under the control treatment was much higher than that of hedgerows.Amorpha could reduce the runoff by 35.2%compared with the control.Soil losses in four hedgerows showed significant reduction in four years(e.g.,Amorpha:78.3%;Honeysuckle:77.1%).Nutrient losses in winter were much higher than that in summer,especially total nitrogen,total phosphorus and total potassium,even though there was an abundant precipitation in summer.Hedgerows greatly affected the soil and nutrient losses on slopping farmland compared with the control treatment,especially Amorpha treatment.The present study found that the Amorpha could be used as the hedgerow species for reducing soil and water loss in the Danjiangkou Reservoir Region.
文摘On the basis of the data obtained from the comprehensive Kuroshio surveys in 1987-1988,this paper analyses the oceanographic characteristics in the area (125°-130° E,27°-31° N) of the continental shelf edge of the East China Sea (E. C. S. ) and its adjacent waters and discusses the effects of the Kuroshio front,thermocline and upwelling of the Kuroshio subsurface water on the distribution of standing stock of phytoplankton (chlorophyll-a). The distribution of high content of chlorophylly-a has been detected at 20-50 in depth in the water body on the left side of the Kuroshio front in the continental shelf edge waters of the E. C. S. The high content of chlorophyll-a spreads from the shelf area to the Kuroshio area in the form of a tongue and connects with the maximum layer of subsurface chlorophyll-a of the Kuroshio and pelagic sea. The author considers that the formation of the distribution of high content chlorophyll-a in this area results from the bottom topography and oceanic environment and there are close correlations between the high content of chlorophyll-a and the light-nutrient environment.
基金Supported by Operation and Improvement Program of Climate Monitoring,Warning and Assessment Services in Three Gorges Reservoir AreaNational Key Technology R&D Program (2007BAC29B06)+1 种基金Major State Basic Research Development 973 Program (2006CB400503)National Natural Science Foundation of China (40705031)
文摘Based on the meteorological data from 33 stations of Three Gorges Reservoir from 1960 to 2008,climate yield of rice,corn and winter wheat and the changes of climatic potential productivity after water storage in Three Gorges Reservoir were calculated by the dynamic statistic model of crop growth.The results showed that the temperature in Three Gorges Reservoir was fluctuant decreased before late 1980s,and warmed rapidly after the late 1980s.The precipitation had little change before the late 1990s and had a slight decrease after the late 1990s.Sunshine hours were more in 1960s and 1970s,and then it changed little after 1980s.After water storage,the temperature increased in Three Gorges Reservoir as a whole.The precipitation decreased in the south of Three Gorges Reservoir,while it increased in the northwest of Three Gorges Reservoir.The sunshine hours were reduced except that in the vicinity of Dianjiang.After water storage,climatic potential productivity of rice decreased in the northwest and the northeast,while it increased in the south of Three Gorges Reservoir.The climatic potential productivity of corn decreased in the northeast and the southwest,but increased in the rest of Three Gorges Reservoir.The climatic potential productivity of winter wheat increased almost in total.
基金Supported by Guangdong Natural Science Foundation(8152500002000005)Guangdong Science and Technology Project(2011B030800017)Zhanjiang Normal University Talents Introduction and Undergraduates Innovation Program~~
文摘Statistical work and analysis were made based on data of monitored wa- ter quality data in Hedi Reservoir during 2000-2010 and the results show that the content of nutritive salt was higher and water was moderate or light eutrophication. Based on status quo and practical survey research of the Reservoir, the causes for eutrophication deterioration were analyzed and countermeasures were proposed, providing scientific references for sustainable development of Hedi Reservoir.
基金supported by the Hi-Tech Demonstration Project of China National Planning Commitee(A00300100584)National Major Basic Research Project(G2000077907).
文摘The dynamics of red edge parameters at different growth stages of wheat canopy was studied. The red edge position moved to the longer wavelength from erecting stage to heading stage, and returned to the original wavelength direction from grain-filling stage to maturity stage. The leaf total nitrogen content (LTN) is positively related to red edge amplitude (d λ red) and NIR platform amplitude (d λNIRP) and the correlation coefficient improved as growth stage extended. The chlorophyll content (TChl) is negatively related to d λ red from erecting stage to the elongation stage, and positively related to d λ red from heading stage to milky maturity stage. TChl is also positively related to d λNIRP. The leaf area index (LAI) is positively related to d λ red and d λNIRP, and the correlation coefficient improved as growth stage extended. It was concluded that d λ red and d λNIRP can be used as the indicators of winter wheat growth state, and guide the fertilization and irrigation decision making. The λNIRF is suitable for derivation of LTN, the d λ red for TChl, and the d λ red or d λNIRP for LAI.
基金supported by the National Natural Science Foundation of China(Grants No.41101250 and 51309031)the Chinese 12th Five-Year Science and Technology Support Program(Grant No.2012BAC06B00)
文摘The water quality in the Danjiangkou Reservoir has attracted considerable attention from the Chinese public and government since the announcement of the Middle Route of the South to North Water Diversion Project (SNWDP), which commenced transferring water in 2014. Integrated research on the evaluation, prediction, and protection of water quality in the Danjiangkou Reservoir was carried out in this study in order to improve environmental management. Based on 120 water samples, wherein 17 water quality indices were measured at 20 monitoring sites, a single factor evaluation method was used to evaluate the current status of water quality. The results show that the main indices influencing the water quality in the Danjiangkou Reservoir are total phosphorus (TP), permanganate index (CODM,), dissolved oxygen (DO), and five-day biochemical oxygen demand (BODs), and the concentrations of TP, BODs, ammonia nitrogen (NH3--N), CODM,, DO, and anionic surfactant (Surfa) do not reach the specified standard levels in the tributaries. Seasonal Mann--Kendall tests indicated that the CODMn concentration shows a highly significant increasing trend, and the TP concentration shows a significant increasing trend in the Danjiangkou Reservoir. The distribution of the main water quality indices in the Danjiangkou Reservoir was predicted using a two-dimensional water quality numerical model, and showed that the sphere of influence from the tributaries can spread across half of the Han Reservoir if the pollutants are not controlled. Cluster analysis (CA) results suggest that the Shending River is heavily polluted, that the Jianghe, Sihe, and Jianhe rivers are moderately polluted, and that they should be the focus of environmental remediation.
文摘The Sanxia Reservoir on the Changjiang River stored water from 1 to 10 June and from 25 October to 5 November in 2003, elevating the water level to 135 and 139 m above mean sea level at the dam, respectively. A monthly dataset of water discharge, suspended sediment concentration (SSC) and sediment load of the Changjiang River from 1953 to 2003 measured at the Datong Hydrological Gauging Station of the downstreammost Changjiang River was mainly used to examine the Changjiang River sediment delivering into the sea in 2003 in response to the Sanxia Reservoir water storages in the same year. The results show that (1) compared with those in 2002, 2001, and the multi-yearly (1953-2000) average, both annual SSC and sediment load at Datong in 2003 were markedly reduced, and they were even smaller than the multi-yearly (1953-2000) minimum, although the annual runoff in 2003 did not change largely; and (2) compared with those in the corresponding months in 2002, 2001 and the multi-monthly average from 1953 to 2000, monthly SSC and sediment load at Datong both in June and November of 2003 were also markedly reduced, and those in June 2003 were even smaller than the multi-monthly minimum from 1953 to 2000. These may indicate that sediment sedimentation in the Sanxia Reservoir resulting from the Sanxia Reservoir water storage should be the main cause of the decreased annual and monthly SSC and sediment load of the Changjiang River into the sea in 2003. Besides, it seems that the Sanxia Reservoir water storage in the early June (flood season) of 2003 had more impacts on the decreased monthly SSC into the sea than that in the late October and early November (approximately non-flood season) of 2003.
基金The project supported by the Innovative Project of CAS (KJCX-SW-L08)the National Basic Research Program of China(973)
文摘The similarity criterion for water flooding reservoir flows is concerned with in the present paper. When finding out all the dimensionless variables governing this kind of flow, their physical meanings are subsequently elucidated. Then, a numerical approach of sensitivity analysis is adopted to quantify their corresponding dominance degree among the similarity parameters. In this way, we may finally identify major scaling law in different parameter range and demonstrate the respective effects of viscosity, permeability and injection rate.
基金Supported by the National Basic Research Program of China (973 Program) (No. 2008CB418006)the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX-YW-14-1)
文摘One of the water source areas of the South-to-North Water Diversion Project is the Danjiangkou Reservoir (DJKR). To understand seasonal variation in phytoplankton composition, abundance and distribution in the DJKR area before water diversion, as well as to estimate potential risks of water quality after water diversion, we conducted an investigation on phytoplankton in the DJKR from August 2008 to May 2009. The investigation included 10 sampling sites, each with four depths of 0.5, 5, 10, and 20 m. In this study, 117 taxa belonging to 76 genera were identified, consisting of diatoms (39 taxa), green algae (47 taxa), blue-green algae (19 taxa), and others (12 taxa). Annual average phytoplankton abundance was 2.01×10^6 ind./L, and the highest value was 14.72 ×10^6 ind/L (at site 3 in August 2008). Phytoplankton abundance in front of the Danjiangkou Dam (DJKD) was higher than that of the Danjiang Reservoir Basin. Phytoplankton distribution showed a vertical declining trend from 0.5 m to 20 m at most sites in August 2008 (especially at sites of 1, 2, 4 and 10), but no distinct pattern in other sampling months. In December 2008 and March 2009, Stephanodiseus sp. was the most abundant species, amounting to 55.23% and 72.34%, respectively. We propose that high abundance ofStephanodiscus sp. may have contributed greatly to the frequent occurrence of Stephanodiscus sp. blooms in middle-low reaches of the Hanjiang River during the early spring of 2009. In comparison with previous studies conducted from 1992 to 2006, annual average phytoplankton density, green algae and blue-green algae species, as well as major nutrient concentrations increased, while phytoplankton diversity indices declined. This indicates a gradual decline in water quality. More research should be conducted and countermeasures taken to prevent further deterioration of water quality in the DJKR.