The impact dynamics of a flexible multibody system is investigated. By using a partition method, the system is divided into two parts, the local impact region and the region away from the impact. The two parts are con...The impact dynamics of a flexible multibody system is investigated. By using a partition method, the system is divided into two parts, the local impact region and the region away from the impact. The two parts are connected by specific boundary conditions, and the system after partition is equivalent to the original system. According to the rigid-flexible coupling dynamic theory of multibody system, system's rigid-flexible coupling dynamic equations without impact are derived. A local impulse method for establishing the initial impact conditions is proposed. It satisfies the compatibility con- ditions for contact constraints and the actual physical situation of the impact process of flexible bodies. Based on the contact constraint method, system's impact dynamic equa- tions are derived in a differential-algebraic form. The contact/separation criterion and the algorithm are given. An impact dynamic simulation is given. The results show that system's dynamic behaviors including the energy, the deformations, the displacements, and the impact force during the impact process change dramatically. The impact makes great effects on the global dynamics of the system during and after impact.展开更多
In this paper,the application of an algorithm for precipitation retrieval based on Himawari-8 (H8) satellite infrared data is studied.Based on GPM precipitation data and H8 Infrared spectrum channel brightness tempera...In this paper,the application of an algorithm for precipitation retrieval based on Himawari-8 (H8) satellite infrared data is studied.Based on GPM precipitation data and H8 Infrared spectrum channel brightness temperature data,corresponding "precipitation field dictionary" and "channel brightness temperature dictionary" are formed.The retrieval of precipitation field based on brightness temperature data is studied through the classification rule of k-nearest neighbor domain (KNN) and regularization constraint.Firstly,the corresponding "dictionary" is constructed according to the training sample database of the matched GPM precipitation data and H8 brightness temperature data.Secondly,according to the fact that precipitation characteristics in small organizations in different storm environments are often repeated,KNN is used to identify the spectral brightness temperature signal of "precipitation" and "non-precipitation" based on "the dictionary".Finally,the precipitation field retrieval is carried out in the precipitation signal "subspace" based on the regular term constraint method.In the process of retrieval,the contribution rate of brightness temperature retrieval of different channels was determined by Bayesian model averaging (BMA) model.The preliminary experimental results based on the "quantitative" evaluation indexes show that the precipitation of H8 retrieval has a good correlation with the GPM truth value,with a small error and similar structure.展开更多
A novel symplectic superposition method has been proposed and developed for plate and shell problems in recent years.The method has yielded many new analytic solutions due to its rigorousness.In this study,the first e...A novel symplectic superposition method has been proposed and developed for plate and shell problems in recent years.The method has yielded many new analytic solutions due to its rigorousness.In this study,the first endeavor is made to further developed the symplectic superposition method for the free vibration of rectangular thin plates with mixed boundary constraints on an edge.The Hamiltonian system-based governing equation is first introduced such that the mathematical techniques in the symplectic space are applied.The solution procedure incorporates separation of variables,symplectic eigen solution and superposition.The analytic solution of an original problem is finally obtained by a set of equations via the equivalence to the superposition of some elaborated subproblems.The natural frequency and mode shape results for representative plates with both clamped and simply supported boundary constraints imposed on the same edge are reported for benchmark use.The present method can be extended to more challenging problems that cannot be solved by conventional analytic methods.展开更多
Traditional topology optimization methods may lead to a great reduction in the redundancy of the optimized structure due to unexpected material removal at the critical components.The local failure in critical componen...Traditional topology optimization methods may lead to a great reduction in the redundancy of the optimized structure due to unexpected material removal at the critical components.The local failure in critical components can instantly cause the overall failure in the structure.More and more scholars have taken the fail-safe design into consideration when conducting topology optimization.A lot of good designs have been obtained in their research,though limited regarding minimizing structural compliance(maximizing stiffness)with given amount of material.In terms of practical engineering applications considering fail-safe design,it is more meaningful to seek for the lightweight structure with enough stiffness to resist various component failures and/or to meet multiple design requirements,than the stiffest structure only.Thus,this paper presents a fail-safe topology optimization model for minimizing structural weight with respect to stress and displacement constraints.The optimization problem is solved by utilizing the independent continuous mapping(ICM)method combined with the dual sequence quadratic programming(DSQP)algorithm.Special treatments are applied to the constraints,including converting local stress constraints into a global structural strain energy constraint and expressing the displacement constraint explicitly with approximations.All of the constraints are nondimensionalized to avoid numerical instability caused by great differences in constraint magnitudes.The optimized results exhibit more complex topological configurations and higher redundancy to resist local failures than the traditional optimization designs.This paper also shows how to find the worst failure region,which can be a good reference for designers in engineering.展开更多
Combining the vector level set model,the shape sensitivity analysis theory with the gradient projection technique,a level set method for topology optimization with multi-constraints and multi-materials is presented in...Combining the vector level set model,the shape sensitivity analysis theory with the gradient projection technique,a level set method for topology optimization with multi-constraints and multi-materials is presented in this paper.The method implicitly describes structural material in- terfaces by the vector level set and achieves the optimal shape and topology through the continuous evolution of the material interfaces in the structure.In order to increase computational efficiency for a fast convergence,an appropriate nonlinear speed mapping is established in the tangential space of the active constraints.Meanwhile,in order to overcome the numerical instability of general topology opti- mization problems,the regularization with the mean curvature flow is utilized to maintain the interface smoothness during the optimization process.The numerical examples demonstrate that the approach possesses a good flexibility in handling topological changes and gives an interface representation in a high fidelity,compared with other methods based on explicit boundary variations in the literature.展开更多
A computational method of constraint stabilization and correction is introduced. The method is based on the Baumgart's one-step method. Constraint conditions are addressed to stabilize and correct the solution. Two e...A computational method of constraint stabilization and correction is introduced. The method is based on the Baumgart's one-step method. Constraint conditions are addressed to stabilize and correct the solution. Two examples are given to illustrate the results of the method.展开更多
By redefining the multiplier associated with inequality constraint as a positive definite function of the originally-defined multiplier, say, u2_i, i=1, 2, ..., m, nonnegative constraints imposed on inequality constra...By redefining the multiplier associated with inequality constraint as a positive definite function of the originally-defined multiplier, say, u2_i, i=1, 2, ..., m, nonnegative constraints imposed on inequality constraints in Karush-Kuhn-Tucker necessary conditions are removed. For constructing the Lagrange neural network and Lagrange multiplier method, it is no longer necessary to convert inequality constraints into equality constraints by slack variables in order to reuse those results dedicated to equality constraints, and they can be similarly proved with minor modification. Utilizing this technique, a new type of Lagrange neural network and a new type of Lagrange multiplier method are devised, which both handle inequality constraints directly. Also, their stability and convergence are analyzed rigorously.展开更多
A differential constraint method is used to obtain analytical solutions of a second-grade fluid flow. By using the first-order differential constraint condition, exact solutions of Poiseuille flows, jet flows and Coue...A differential constraint method is used to obtain analytical solutions of a second-grade fluid flow. By using the first-order differential constraint condition, exact solutions of Poiseuille flows, jet flows and Couette flows subjected to suction or blowing forces, and planar elongational flows are derived. In addition, two new classes of exact solutions for a second-grade fluid flow are found. The obtained exact solutions show that the non-Newtonian second-grade flow behavior depends not only on the material viscosity but also on the material elasticity. Finally, some boundary value problems are discussed.展开更多
The accuracy of parameter estimation is critical when digitally modeling a ship. A parameter estimation method with constraints was developed, based on the variational method. Performance functions and constraint equa...The accuracy of parameter estimation is critical when digitally modeling a ship. A parameter estimation method with constraints was developed, based on the variational method. Performance functions and constraint equations in the variational method are constructed by analyzing input and output equations of the system. The problem of parameter estimation was transformed into a problem of least squares estimation. The parameter estimation equation was analyzed in order to get an optimized estimation of parameters based on the Lagrange multiplication operator. Simulation results showed that this method is better than the traditional least squares estimation, producing a higher precision when identifying parameters. It has very important practical value in areas of application such as system identification and parameter estimation.展开更多
In this paper we discuss about infeasibility diagnosis and infeasibility resolution, when the constraint method is used for solving multi objective linear programming problems. We propose an algorithm for resolution o...In this paper we discuss about infeasibility diagnosis and infeasibility resolution, when the constraint method is used for solving multi objective linear programming problems. We propose an algorithm for resolution of infeasibility, which is a combination of interactive, weighting and constraint methods.Numerical examples are provided to illustrate the techniques developed.展开更多
In this paper, a new method for solving a mathematical programming problem with linearly complementarity constraints (MPLCC) is introduced, which applies the Levenberg-Marquardt (L-M) method to solve the B-stationary ...In this paper, a new method for solving a mathematical programming problem with linearly complementarity constraints (MPLCC) is introduced, which applies the Levenberg-Marquardt (L-M) method to solve the B-stationary condition of original problem. Under the MPEC-LICQ, the proposed method is proved convergent to B-stationary point of MPLCC.展开更多
Projected Runge-Kutta (R-K) methods for constrained Hamiltonian systems are proposed. Dynamic equations of the systems, which are index-3 differential-algebraic equations (DAEs) in the Heisenberg form, are establi...Projected Runge-Kutta (R-K) methods for constrained Hamiltonian systems are proposed. Dynamic equations of the systems, which are index-3 differential-algebraic equations (DAEs) in the Heisenberg form, are established under the framework of Lagrangian multipliers. R-K methods combined with the technique of projections are then used to solve the DAEs. The basic idea of projections is to eliminate the constraint violations at the position, velocity, and acceleration levels, and to preserve the total energy of constrained Hamiltonian systems by correcting variables of the position, velocity, acceleration, and energy. Numerical results confirm the validity and show the high precision of the proposed method in preserving three levels of constraints and total energy compared with results reported in the literature.展开更多
This paper focuses on studying the integration method of a generalized Birkhoffian system.The method of variation on parameters for the dynamical equations of a generalized Birkhoffian system is presented.The procedur...This paper focuses on studying the integration method of a generalized Birkhoffian system.The method of variation on parameters for the dynamical equations of a generalized Birkhoffian system is presented.The procedure for solving the problem can be divided into two steps:the first step,a system of auxiliary equations is constructed and its general solution is given;the second step,the parameters are varied,and the solution of the problem is obtained by using the properties of generalized canonical transformation.The method of variation on parameters for the generalized Birkhoffian system is of universal significance,and we take a nonholonomic system and a nonconservative system as examples to illustrate the application of the results of this paper.展开更多
Based on the structural characteristics of the double-differenced normal equation, a new method was proposed to resolve the ambiguity float solution through a selection of parameter weights to construct an appropriate...Based on the structural characteristics of the double-differenced normal equation, a new method was proposed to resolve the ambiguity float solution through a selection of parameter weights to construct an appropriate regularized matrix, and a singular decomposition method was used to generate regularization parameters. Numerical test results suggest that the regularized ambiguity float solution is more stable and reliable than the least-squares float solution. The mean square error matrix of the new method possesses a lower correlation than the variancecovariance matrix of the least-squares estimation. The size of the ambiguity search space is reduced and the search efficiency is improved. The success rate of the integer ambiguity searching process is improved significantly when the ambiguity resolution by using constraint equation method is used to determine the correct ambiguity integervector. The ambiguity resolution by using constraint equation method requires an initial input of the ambiguity float solution candidates which are obtained from the LAMBDA method in the new method. In addition, the observation time required to fix reliable integer ambiguities can he significantly reduced.展开更多
The reasonable prior information between the parameters in the adjustment processing can significantly improve the precision of the parameter solution. Based on the principle of equality constraints, we establish the ...The reasonable prior information between the parameters in the adjustment processing can significantly improve the precision of the parameter solution. Based on the principle of equality constraints, we establish the mixed additive and multiplicative random error model with equality constraints and derive the weighted least squares iterative solution of the model. In addition, aiming at the ill-posed problem of the coefficient matrix, we also propose the ridge estimation iterative solution of ill-posed mixed additive and multiplicative random error model with equality constraints based on the principle of ridge estimation method and derive the U-curve method to determine the ridge parameter. The experimental results show that the weighted least squares iterative solution can obtain more reasonable parameter estimation and precision information than existing solutions, verifying the feasibility of applying the equality constraints to the mixed additive and multiplicative random error model. Furthermore, the ridge estimation iterative solution can obtain more accurate parameter estimation and precision information than the weighted least squares iterative solution.展开更多
An investigation is carried out on the problem involved in 4D variational data assimilation (VDA) with constraint conditions based on a finite-element shallow-water equation model. In the investigation, the adjoint te...An investigation is carried out on the problem involved in 4D variational data assimilation (VDA) with constraint conditions based on a finite-element shallow-water equation model. In the investigation, the adjoint technology, penalty method and augmented Lagrangian method are used in constraint optimization field to minimize the defined constraint objective functions. The results of the numerical experiments show that the optimal solutions are obtained if the functions reach the minima. VDA with constraint conditions controlling the growth of gravity oscillations is efficient to eliminate perturbation and produces optimal initial field. It seems that this method can also be applied to the problem in numerical weather prediction. Key words Variational data assimilation - Constraint conditions - Penalty methods - finite-element model This research is supported by National Natural Science Foundation of China (Grant No. 49575269) and by National Key Basic Research on the Formation Mechanism and Prediction Theory of Severe Synoptic Disasters (Grant No. G1998040910).展开更多
In order to smooth the trajectory of a robot and reduce dwell time,a transition curve is introduced between two adjacent curves in three-dimensional space.G2 continuity is guaranteed to transit smoothly.To minimize th...In order to smooth the trajectory of a robot and reduce dwell time,a transition curve is introduced between two adjacent curves in three-dimensional space.G2 continuity is guaranteed to transit smoothly.To minimize the amount of calculation,cubic and quartic Bezier curves are both analyzed.Furthermore,the contour curve is characterized by a transition parameter which defines the distance to the corner of the deviation.How to define the transition points for different curves is presented.A general move command interface is defined for receiving the curve limitations and transition parameters.Then,how to calculate the control points of the cubic and quartic Bezier curves is analyzed and given.Different situations are discussed separately,including transition between two lines,transition between a line and a circle,and transition between two circles.Finally,the experiments are carried out on a six degree of freedom(DOF) industrial robot to validate the proposed method.Results of single transition and multiple transitions are presented.The trajectories in the joint space are also analyzed.The results indicate that the method achieves G2 continuity within the transition constraint and has good efficiency and adaptability.展开更多
The electromagnetic detection satellite (EDS) is a type of earth observation satellites (EOSs). The Information collected by EDSs plays an important role in some fields, such as industry, science and military. The...The electromagnetic detection satellite (EDS) is a type of earth observation satellites (EOSs). The Information collected by EDSs plays an important role in some fields, such as industry, science and military. The scheduling of EDSs is a complex combinatorial optimization problem. Current research mainly focuses on the scheduling of imaging satellites and SAR satellites, but little work has been done on the scheduling of EDSs for its specific characteristics. A multi-satellite scheduling model is established, in which the specific constrains of EDSs are considered, then a scheduling algorithm based on the genetic algorithm (GA) is proposed. To deal with the specific constrains of EDSs, a penalty function method is introduced. However, it is hard to determine the appropriate penalty coefficient in the penalty function. Therefore, an adaptive adjustment mechanism of the penalty coefficient is designed to solve the problem, as well as improve the scheduling results. Experimental results are used to demonstrate the correctness and practicability of the proposed scheduling algorithm.展开更多
Under the environment of electric power market, economic dispatch (ED) problem should consider network constraints, unit ramp rates, besides the basic constraints. For this problem, it is important to establish the ef...Under the environment of electric power market, economic dispatch (ED) problem should consider network constraints, unit ramp rates, besides the basic constraints. For this problem, it is important to establish the effective model and algorithm. This paper examines the decoupled conditions that affect the solution optimality to this problem. It proposes an effective model and solution method. Based on the look-ahead technique, it finds the number of time intervals to guarantee the solution optimality. Next, an efficient technique for finding the optimal solution via the interior point methods is described. Test cases, which include dispatching six units over 5 time intervals on the IEEE 30 test system with line flows and ramp constraints are presented. Results indicate that the computational effort as measured by iteration counts or execution time varies only modestly with the problem size.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11132007,11272155,and 10772085)the Fundamental Research Funds for the Central Universities(No.30920130112009)the 333 Project of Jiangsu Province of China(No.BRA2011172)
文摘The impact dynamics of a flexible multibody system is investigated. By using a partition method, the system is divided into two parts, the local impact region and the region away from the impact. The two parts are connected by specific boundary conditions, and the system after partition is equivalent to the original system. According to the rigid-flexible coupling dynamic theory of multibody system, system's rigid-flexible coupling dynamic equations without impact are derived. A local impulse method for establishing the initial impact conditions is proposed. It satisfies the compatibility con- ditions for contact constraints and the actual physical situation of the impact process of flexible bodies. Based on the contact constraint method, system's impact dynamic equa- tions are derived in a differential-algebraic form. The contact/separation criterion and the algorithm are given. An impact dynamic simulation is given. The results show that system's dynamic behaviors including the energy, the deformations, the displacements, and the impact force during the impact process change dramatically. The impact makes great effects on the global dynamics of the system during and after impact.
基金Supported by National Natural Science Foundation of China(41805080)Natural Science Foundation of Anhui Province,China(1708085QD89)+1 种基金Key Research and Development Program Projects of Anhui Province,China(201904a07020099)Open Foundation Project Shenyang Institute of Atmospheric Environment,China Meteorological Administration(2016SYIAE14)
文摘In this paper,the application of an algorithm for precipitation retrieval based on Himawari-8 (H8) satellite infrared data is studied.Based on GPM precipitation data and H8 Infrared spectrum channel brightness temperature data,corresponding "precipitation field dictionary" and "channel brightness temperature dictionary" are formed.The retrieval of precipitation field based on brightness temperature data is studied through the classification rule of k-nearest neighbor domain (KNN) and regularization constraint.Firstly,the corresponding "dictionary" is constructed according to the training sample database of the matched GPM precipitation data and H8 brightness temperature data.Secondly,according to the fact that precipitation characteristics in small organizations in different storm environments are often repeated,KNN is used to identify the spectral brightness temperature signal of "precipitation" and "non-precipitation" based on "the dictionary".Finally,the precipitation field retrieval is carried out in the precipitation signal "subspace" based on the regular term constraint method.In the process of retrieval,the contribution rate of brightness temperature retrieval of different channels was determined by Bayesian model averaging (BMA) model.The preliminary experimental results based on the "quantitative" evaluation indexes show that the precipitation of H8 retrieval has a good correlation with the GPM truth value,with a small error and similar structure.
基金the support from the National Natural Science Foundation of China(Grants 12022209,11972103,and 11825202)the Liaoning Revitalization Talents Program of China(Grant XLYC1807126)the Fundamental Research Funds for the Central Universities(Grant DUT21LAB124).
文摘A novel symplectic superposition method has been proposed and developed for plate and shell problems in recent years.The method has yielded many new analytic solutions due to its rigorousness.In this study,the first endeavor is made to further developed the symplectic superposition method for the free vibration of rectangular thin plates with mixed boundary constraints on an edge.The Hamiltonian system-based governing equation is first introduced such that the mathematical techniques in the symplectic space are applied.The solution procedure incorporates separation of variables,symplectic eigen solution and superposition.The analytic solution of an original problem is finally obtained by a set of equations via the equivalence to the superposition of some elaborated subproblems.The natural frequency and mode shape results for representative plates with both clamped and simply supported boundary constraints imposed on the same edge are reported for benchmark use.The present method can be extended to more challenging problems that cannot be solved by conventional analytic methods.
基金This work showed in this paper has been supported by the National Natural Science Foundation of China(Grant 11872080).
文摘Traditional topology optimization methods may lead to a great reduction in the redundancy of the optimized structure due to unexpected material removal at the critical components.The local failure in critical components can instantly cause the overall failure in the structure.More and more scholars have taken the fail-safe design into consideration when conducting topology optimization.A lot of good designs have been obtained in their research,though limited regarding minimizing structural compliance(maximizing stiffness)with given amount of material.In terms of practical engineering applications considering fail-safe design,it is more meaningful to seek for the lightweight structure with enough stiffness to resist various component failures and/or to meet multiple design requirements,than the stiffest structure only.Thus,this paper presents a fail-safe topology optimization model for minimizing structural weight with respect to stress and displacement constraints.The optimization problem is solved by utilizing the independent continuous mapping(ICM)method combined with the dual sequence quadratic programming(DSQP)algorithm.Special treatments are applied to the constraints,including converting local stress constraints into a global structural strain energy constraint and expressing the displacement constraint explicitly with approximations.All of the constraints are nondimensionalized to avoid numerical instability caused by great differences in constraint magnitudes.The optimized results exhibit more complex topological configurations and higher redundancy to resist local failures than the traditional optimization designs.This paper also shows how to find the worst failure region,which can be a good reference for designers in engineering.
基金The project supported by the National Natural Science Foundation of China (59805001,10332010) and Key Science and Technology Research Project of Ministry of Education of China (No.104060)
文摘Combining the vector level set model,the shape sensitivity analysis theory with the gradient projection technique,a level set method for topology optimization with multi-constraints and multi-materials is presented in this paper.The method implicitly describes structural material in- terfaces by the vector level set and achieves the optimal shape and topology through the continuous evolution of the material interfaces in the structure.In order to increase computational efficiency for a fast convergence,an appropriate nonlinear speed mapping is established in the tangential space of the active constraints.Meanwhile,in order to overcome the numerical instability of general topology opti- mization problems,the regularization with the mean curvature flow is utilized to maintain the interface smoothness during the optimization process.The numerical examples demonstrate that the approach possesses a good flexibility in handling topological changes and gives an interface representation in a high fidelity,compared with other methods based on explicit boundary variations in the literature.
基金the National Natural Science Foundation of China (10572021 ,10372053)Basic Research Foundation of Beijing Institute of Tech-nology (BIT-UBF-200507A4206)
文摘A computational method of constraint stabilization and correction is introduced. The method is based on the Baumgart's one-step method. Constraint conditions are addressed to stabilize and correct the solution. Two examples are given to illustrate the results of the method.
文摘By redefining the multiplier associated with inequality constraint as a positive definite function of the originally-defined multiplier, say, u2_i, i=1, 2, ..., m, nonnegative constraints imposed on inequality constraints in Karush-Kuhn-Tucker necessary conditions are removed. For constructing the Lagrange neural network and Lagrange multiplier method, it is no longer necessary to convert inequality constraints into equality constraints by slack variables in order to reuse those results dedicated to equality constraints, and they can be similarly proved with minor modification. Utilizing this technique, a new type of Lagrange neural network and a new type of Lagrange multiplier method are devised, which both handle inequality constraints directly. Also, their stability and convergence are analyzed rigorously.
基金supported by the National Natural Science Foundation of China (No. 10772110)
文摘A differential constraint method is used to obtain analytical solutions of a second-grade fluid flow. By using the first-order differential constraint condition, exact solutions of Poiseuille flows, jet flows and Couette flows subjected to suction or blowing forces, and planar elongational flows are derived. In addition, two new classes of exact solutions for a second-grade fluid flow are found. The obtained exact solutions show that the non-Newtonian second-grade flow behavior depends not only on the material viscosity but also on the material elasticity. Finally, some boundary value problems are discussed.
基金Supported by the Navy Equipment Department Foundation under Grant No. 2009(189)
文摘The accuracy of parameter estimation is critical when digitally modeling a ship. A parameter estimation method with constraints was developed, based on the variational method. Performance functions and constraint equations in the variational method are constructed by analyzing input and output equations of the system. The problem of parameter estimation was transformed into a problem of least squares estimation. The parameter estimation equation was analyzed in order to get an optimized estimation of parameters based on the Lagrange multiplication operator. Simulation results showed that this method is better than the traditional least squares estimation, producing a higher precision when identifying parameters. It has very important practical value in areas of application such as system identification and parameter estimation.
文摘In this paper we discuss about infeasibility diagnosis and infeasibility resolution, when the constraint method is used for solving multi objective linear programming problems. We propose an algorithm for resolution of infeasibility, which is a combination of interactive, weighting and constraint methods.Numerical examples are provided to illustrate the techniques developed.
文摘In this paper, a new method for solving a mathematical programming problem with linearly complementarity constraints (MPLCC) is introduced, which applies the Levenberg-Marquardt (L-M) method to solve the B-stationary condition of original problem. Under the MPEC-LICQ, the proposed method is proved convergent to B-stationary point of MPLCC.
基金Project supported by the National Natural Science Foundation of China(No.11432010)the Doctoral Program Foundation of Education Ministry of China(No.20126102110023)+2 种基金the 111Project of China(No.B07050)the Fundamental Research Funds for the Central Universities(No.310201401JCQ01001)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(No.CX201517)
文摘Projected Runge-Kutta (R-K) methods for constrained Hamiltonian systems are proposed. Dynamic equations of the systems, which are index-3 differential-algebraic equations (DAEs) in the Heisenberg form, are established under the framework of Lagrangian multipliers. R-K methods combined with the technique of projections are then used to solve the DAEs. The basic idea of projections is to eliminate the constraint violations at the position, velocity, and acceleration levels, and to preserve the total energy of constrained Hamiltonian systems by correcting variables of the position, velocity, acceleration, and energy. Numerical results confirm the validity and show the high precision of the proposed method in preserving three levels of constraints and total energy compared with results reported in the literature.
基金supported by the National Natural Science Foundation of China (10972151)
文摘This paper focuses on studying the integration method of a generalized Birkhoffian system.The method of variation on parameters for the dynamical equations of a generalized Birkhoffian system is presented.The procedure for solving the problem can be divided into two steps:the first step,a system of auxiliary equations is constructed and its general solution is given;the second step,the parameters are varied,and the solution of the problem is obtained by using the properties of generalized canonical transformation.The method of variation on parameters for the generalized Birkhoffian system is of universal significance,and we take a nonholonomic system and a nonconservative system as examples to illustrate the application of the results of this paper.
文摘Based on the structural characteristics of the double-differenced normal equation, a new method was proposed to resolve the ambiguity float solution through a selection of parameter weights to construct an appropriate regularized matrix, and a singular decomposition method was used to generate regularization parameters. Numerical test results suggest that the regularized ambiguity float solution is more stable and reliable than the least-squares float solution. The mean square error matrix of the new method possesses a lower correlation than the variancecovariance matrix of the least-squares estimation. The size of the ambiguity search space is reduced and the search efficiency is improved. The success rate of the integer ambiguity searching process is improved significantly when the ambiguity resolution by using constraint equation method is used to determine the correct ambiguity integervector. The ambiguity resolution by using constraint equation method requires an initial input of the ambiguity float solution candidates which are obtained from the LAMBDA method in the new method. In addition, the observation time required to fix reliable integer ambiguities can he significantly reduced.
基金supported by the National Natural Science Foundation of China,Grant Nos.42174011,41874001 and 41664001Innovation Found Designated for Graduate Students of ECUT,Grant No.DHYC-202020。
文摘The reasonable prior information between the parameters in the adjustment processing can significantly improve the precision of the parameter solution. Based on the principle of equality constraints, we establish the mixed additive and multiplicative random error model with equality constraints and derive the weighted least squares iterative solution of the model. In addition, aiming at the ill-posed problem of the coefficient matrix, we also propose the ridge estimation iterative solution of ill-posed mixed additive and multiplicative random error model with equality constraints based on the principle of ridge estimation method and derive the U-curve method to determine the ridge parameter. The experimental results show that the weighted least squares iterative solution can obtain more reasonable parameter estimation and precision information than existing solutions, verifying the feasibility of applying the equality constraints to the mixed additive and multiplicative random error model. Furthermore, the ridge estimation iterative solution can obtain more accurate parameter estimation and precision information than the weighted least squares iterative solution.
基金National Natural Science Foundation of China (Grant No. 49575269) National Key Basic Research on the Formation Mechanism and
文摘An investigation is carried out on the problem involved in 4D variational data assimilation (VDA) with constraint conditions based on a finite-element shallow-water equation model. In the investigation, the adjoint technology, penalty method and augmented Lagrangian method are used in constraint optimization field to minimize the defined constraint objective functions. The results of the numerical experiments show that the optimal solutions are obtained if the functions reach the minima. VDA with constraint conditions controlling the growth of gravity oscillations is efficient to eliminate perturbation and produces optimal initial field. It seems that this method can also be applied to the problem in numerical weather prediction. Key words Variational data assimilation - Constraint conditions - Penalty methods - finite-element model This research is supported by National Natural Science Foundation of China (Grant No. 49575269) and by National Key Basic Research on the Formation Mechanism and Prediction Theory of Severe Synoptic Disasters (Grant No. G1998040910).
基金Supported by the National Natural Science Foundation of China(No.61573358)Research and Development of Large Multi-function Demolition Equipment in Disaster Site(No.2015BAK06B00)
文摘In order to smooth the trajectory of a robot and reduce dwell time,a transition curve is introduced between two adjacent curves in three-dimensional space.G2 continuity is guaranteed to transit smoothly.To minimize the amount of calculation,cubic and quartic Bezier curves are both analyzed.Furthermore,the contour curve is characterized by a transition parameter which defines the distance to the corner of the deviation.How to define the transition points for different curves is presented.A general move command interface is defined for receiving the curve limitations and transition parameters.Then,how to calculate the control points of the cubic and quartic Bezier curves is analyzed and given.Different situations are discussed separately,including transition between two lines,transition between a line and a circle,and transition between two circles.Finally,the experiments are carried out on a six degree of freedom(DOF) industrial robot to validate the proposed method.Results of single transition and multiple transitions are presented.The trajectories in the joint space are also analyzed.The results indicate that the method achieves G2 continuity within the transition constraint and has good efficiency and adaptability.
基金supported by the National Natural Science Foundation of China(6110118461174159)
文摘The electromagnetic detection satellite (EDS) is a type of earth observation satellites (EOSs). The Information collected by EDSs plays an important role in some fields, such as industry, science and military. The scheduling of EDSs is a complex combinatorial optimization problem. Current research mainly focuses on the scheduling of imaging satellites and SAR satellites, but little work has been done on the scheduling of EDSs for its specific characteristics. A multi-satellite scheduling model is established, in which the specific constrains of EDSs are considered, then a scheduling algorithm based on the genetic algorithm (GA) is proposed. To deal with the specific constrains of EDSs, a penalty function method is introduced. However, it is hard to determine the appropriate penalty coefficient in the penalty function. Therefore, an adaptive adjustment mechanism of the penalty coefficient is designed to solve the problem, as well as improve the scheduling results. Experimental results are used to demonstrate the correctness and practicability of the proposed scheduling algorithm.
文摘Under the environment of electric power market, economic dispatch (ED) problem should consider network constraints, unit ramp rates, besides the basic constraints. For this problem, it is important to establish the effective model and algorithm. This paper examines the decoupled conditions that affect the solution optimality to this problem. It proposes an effective model and solution method. Based on the look-ahead technique, it finds the number of time intervals to guarantee the solution optimality. Next, an efficient technique for finding the optimal solution via the interior point methods is described. Test cases, which include dispatching six units over 5 time intervals on the IEEE 30 test system with line flows and ramp constraints are presented. Results indicate that the computational effort as measured by iteration counts or execution time varies only modestly with the problem size.