AIM: To compare under similar conditions intraoperative surgical efficiencies metrics between an active fluidics and a gravity based phacoemulsification systems.METHODS: Adult patients who were diagnosed with a catara...AIM: To compare under similar conditions intraoperative surgical efficiencies metrics between an active fluidics and a gravity based phacoemulsification systems.METHODS: Adult patients who were diagnosed with a cataract that compromised visual acuity inferior to 20/40 were included in the study. Patients were excluded from the study if they had a history of severe retinal disorders, clinically significant corneal endothelial dystrophy or history of corneal disease. All phacoemulsification surgeries were performed by a single surgeon. Both phacoemulsification systems used the 0.9 mm 45-degree aspiration bypass system Intrepid Balanced tip and the 0.9 mm Intrepid Ultra infusion sleeve. All cataracts were classified using the Lens Opacities Classification System III, cumulative dissipated energy(CDE) and aspiration fluids were measured in each surgery.RESULTS: Totally 2000 eyes were included in the study. Phacoemulsification was performed in 1000(50%) eyes with an active fluid dynamics system and in 1000(50%) eyes with a gravity-based fluidic system. Mean CDE until fracture of the lens was 1.1 and 1.9 percent-seconds and total mean CDE used was 5.6 and 7.2 percent-seconds using an active fluidics dynamics system and gravity-based fluidic system, respectively(P<0.001). Mean aspiration fluids used were 70 m L using an active fluidics dynamics system and 85 m L using a gravity-based fluidic system(P<0.001).CONCLUSION: This study evidences that surgeries performed under similar conditions(same surgeon, phaco tip and sleeve) with the active fluidics dynamics system required significantly lower CDE and aspiration fluids.展开更多
Agriculture plays a crucial role in the economy,and there is an increasing global emphasis on automating agri-cultural processes.With the tremendous increase in population,the demand for food and employment has also i...Agriculture plays a crucial role in the economy,and there is an increasing global emphasis on automating agri-cultural processes.With the tremendous increase in population,the demand for food and employment has also increased significantly.Agricultural methods traditionally used to meet these requirements are no longer ade-quate,requiring solutions to issues such as excessive herbicide use and the use of chemical fertilizers.Integration of technologies such as the Internet of Things,wireless communication,machine learning,artificial intelligence(AI),and deep learning shows promise in addressing these challenges.However,there is a lack of comprehensive documentation on the application and potential of AI in improving agricultural input efficiency.To address this gap,a desk research approach was used by utilizing peer-reviewed electronic databases like PubMed,Scopus,Goo-gle Scholar,Web of Science,and Science Direct for relevant articles.Out of 327 initially identified articles,180 were deemed pertinent,focusing primarily on AI’s potential in enhancing yield through better management of nutrients,water,and weeds.Taking into account researchfindings worldwide,we found that AI technologies could assist farmers by providing recommendations on the optimal nutrients to enhance soil quality and deter-mine the best time for irrigation or herbicide application.The present status of AI-driven automation in agricul-ture holds significant promise for optimizing agricultural input utilization and reducing resource waste,particularly in the context of three pillars of crop management,i.e.,nutrient,irrigation,and weed management.展开更多
文摘AIM: To compare under similar conditions intraoperative surgical efficiencies metrics between an active fluidics and a gravity based phacoemulsification systems.METHODS: Adult patients who were diagnosed with a cataract that compromised visual acuity inferior to 20/40 were included in the study. Patients were excluded from the study if they had a history of severe retinal disorders, clinically significant corneal endothelial dystrophy or history of corneal disease. All phacoemulsification surgeries were performed by a single surgeon. Both phacoemulsification systems used the 0.9 mm 45-degree aspiration bypass system Intrepid Balanced tip and the 0.9 mm Intrepid Ultra infusion sleeve. All cataracts were classified using the Lens Opacities Classification System III, cumulative dissipated energy(CDE) and aspiration fluids were measured in each surgery.RESULTS: Totally 2000 eyes were included in the study. Phacoemulsification was performed in 1000(50%) eyes with an active fluid dynamics system and in 1000(50%) eyes with a gravity-based fluidic system. Mean CDE until fracture of the lens was 1.1 and 1.9 percent-seconds and total mean CDE used was 5.6 and 7.2 percent-seconds using an active fluidics dynamics system and gravity-based fluidic system, respectively(P<0.001). Mean aspiration fluids used were 70 m L using an active fluidics dynamics system and 85 m L using a gravity-based fluidic system(P<0.001).CONCLUSION: This study evidences that surgeries performed under similar conditions(same surgeon, phaco tip and sleeve) with the active fluidics dynamics system required significantly lower CDE and aspiration fluids.
文摘Agriculture plays a crucial role in the economy,and there is an increasing global emphasis on automating agri-cultural processes.With the tremendous increase in population,the demand for food and employment has also increased significantly.Agricultural methods traditionally used to meet these requirements are no longer ade-quate,requiring solutions to issues such as excessive herbicide use and the use of chemical fertilizers.Integration of technologies such as the Internet of Things,wireless communication,machine learning,artificial intelligence(AI),and deep learning shows promise in addressing these challenges.However,there is a lack of comprehensive documentation on the application and potential of AI in improving agricultural input efficiency.To address this gap,a desk research approach was used by utilizing peer-reviewed electronic databases like PubMed,Scopus,Goo-gle Scholar,Web of Science,and Science Direct for relevant articles.Out of 327 initially identified articles,180 were deemed pertinent,focusing primarily on AI’s potential in enhancing yield through better management of nutrients,water,and weeds.Taking into account researchfindings worldwide,we found that AI technologies could assist farmers by providing recommendations on the optimal nutrients to enhance soil quality and deter-mine the best time for irrigation or herbicide application.The present status of AI-driven automation in agricul-ture holds significant promise for optimizing agricultural input utilization and reducing resource waste,particularly in the context of three pillars of crop management,i.e.,nutrient,irrigation,and weed management.