期刊文献+
共找到5,555篇文章
< 1 2 250 >
每页显示 20 50 100
Reheat effect on the improvement in efficiency of the turbine driven by pulse detonation
1
作者 Junyu Liu Zhiwu Wang +3 位作者 Zixu Zhang Junlin Li Weifeng Qin Jingjing Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期200-210,共11页
Due to the strong unsteadiness of pulse detonation,large flow losses are generated when the detonation wave interacts with the turbine blades,resulting in low turbine efficiency.Considering that the flow losses are di... Due to the strong unsteadiness of pulse detonation,large flow losses are generated when the detonation wave interacts with the turbine blades,resulting in low turbine efficiency.Considering that the flow losses are dissipated into the gas as heat energy,some of them can be recycled during the expansion process in subsequent stages by the reheat effect,which should be helpful to improve the detonationdriven turbine efficiency.Taking this into account,this paper developed a numerical model of the detonation chamber coupled with a two-stage axial turbine,and a stoichiometric hydrogen-air mixture was used.The improvement in turbine efficiency attributable to the reheat effect was calculated by comparing the average efficiency of the stages with the efficiency of the two-stage turbine.The research indicated that the first stage was critical in suppressing the flow unsteadiness caused by pulse detonation,which stabilized the intake condition of the second stage and consequently allowed much of the flow losses from the first stage to be recycled,so that the efficiency of the two-stage turbine was improved.At a 95%confidence level,the efficiency improvement was stable at 4.5%—5.3%,demonstrating that the reheat effect is significant in improving the efficiency of the detonation-driven turbine. 展开更多
关键词 Pulse detonation turbine engine Hydrogen detonation Turbine efficiency Reheat effect Multi-cycle detonation
下载PDF
Investigation of system parameters towards safer impact based shock-to-detonation transition in a novel laser driven flyer plate prototype
2
作者 Gonca Saglam Ozkasapoglu Selis Onel 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期103-113,共11页
Laser driven flyer plate technology offers improved safety and reliability for detonation of explosives in industrial applications ranging from mining and stone quarrying to the aerospace and defense industries.This s... Laser driven flyer plate technology offers improved safety and reliability for detonation of explosives in industrial applications ranging from mining and stone quarrying to the aerospace and defense industries.This study is based on developing a safer laser driven flyer plate prototype comprised of a laser initiator and a flyer plate subsystem that can be used with secondary explosives.System parameters were optimized to initiate the shock-to-detonation transition(SDT)of a secondary explosive based on the impact created by the flyer plate on the explosive surface.Rupture of the flyer was investigated at the mechanically weakened region located on the interface of these subsystems,where the product gases from the deflagration of the explosive provide the required energy.A bilayer energetic material was used,where the first layer consisted of a pyrotechnic component,zirconium potassium perchlorate(ZPP),for sustaining the ignition by the laser beam and the second layer consisted of an insensitive explosive,cyclotetramethylene-tetranitramine(HMX),for deflagration.A plexiglass interface was used to enfold the energetic material.The focal length of the laser beam from the diode was optimized to provide a homogeneous beam profile with maximum power at the surface of the ZPP.Closed bomb experiments were conducted in an internal volume of 10 cm^(3) for evaluation of performance.Dependency of the laser driven flyer plate system output on confinement,explosive density,and laser beam power were analyzed.Measurements using a high-speed camera resulted in a flyer velocity of 670±20 m/s that renders the prototype suitable as a laser detonator in applications,where controlled employment of explosives is critical. 展开更多
关键词 Laser driven flyer plate Shock to detonation transition detonation Secondary explosives Pyrotechnic materials CONFINEMENT
下载PDF
Assessing the energy release characteristics during the middle detonation reaction stage of aluminized explosives
3
作者 Kun Yang Lang Chen +3 位作者 Danyang Liu Bin Zhang Jianying Lu Junying Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期270-277,共8页
Afterburning behind the detonation front of an aluminized explosive releases energy on the millisecond timescale,which prolong the release of detonation energy and the energy release at different stages also shows sig... Afterburning behind the detonation front of an aluminized explosive releases energy on the millisecond timescale,which prolong the release of detonation energy and the energy release at different stages also shows significant differences.However,at present,there are few effective methods for evaluating the energy release characteristics of the middle reaction stage of such explosives,which can have a duration of tens to hundreds of microseconds.The present work demonstrates an approach to assessing the midstage of an aluminized explosive detonation based on a water push test employing a high degree of confinement.In this method,the explosive is contained in a steel cylinder having one end closed that is installed at the bottom of a transparent water tank.Upon detonation,the gaseous products expand in one direction while forcing water ahead of them.The resulting underwater shock wave and the interface between the gas phase products and the water are tracked using an ultra-high-speed framing and streak camera.The shock wave velocity in water and the expansion work performed by the gaseous detonation products were calculated to assess the energy release characteristics of aluminized explosives such as CL-20 and RDX in the middle stage of the detonation reaction.During the middle stage of the detonation process of these aluminized explosives,the aluminum reaction reduced the attenuation of shock waves and increased the work performed by gas phase products.A higher aluminum content increased the energy output while the presence of oxidants slowed the energy release rate.This work demonstrates an effective means of evaluating the performance of aluminized explosives. 展开更多
关键词 Aluminized explosive Non-ideal detonation Water push test Energy release
下载PDF
Study on concentration distribution and detonation characteristics for non-axisymmetric fuel dispersal
4
作者 Linghui Zeng Zhongqi Wang +1 位作者 Xing Chen Jianping Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期484-495,共12页
The study of non-axisymmetric fuel dispersal and detonation can provide reference for the prevention of industrial cloud explosion accidents and the design of fuel air explosive(FAE).The concentration and detonation f... The study of non-axisymmetric fuel dispersal and detonation can provide reference for the prevention of industrial cloud explosion accidents and the design of fuel air explosive(FAE).The concentration and detonation fields of 85 kg cylindrical and fan-shaped fuel are investigated by experiments and numerical simulations.A dynamic model of the whole process for fuel dispersal and detonation is built.The concentration distribution of fuel is used as the initial condition to calculate the detonation stage,thus solving the initial value problem of detonation field.The phase and component changes of fuel cloud at different locations are compared.The fuel cloud is divided into directions of 0°,90°,135°and 180°.The results show that the maximum cloud radius is 20.94 m in 135°and the minimum is 12.04 m in 0°.The diameter of the detonation fireball is 53.6 m,and the peak temperature is 3455 K.The highest peak overpressure is 3.44 MPa in 0°and the lowest is 2.97 MPa in 135°.The proportion of liquid phase in 0°is22.90%,and the fuel loss is 11.8% and 9% higher than that in 135°and cylindrical charge,respectively.The stable propagation distance of blast wave in 135°is 42.50% longer than 0°and 28.37% longer than cylindrical charge. 展开更多
关键词 Fuel dispersal Concentration distribution detonation characteristic Fuel loss Numerical simulation
下载PDF
Atmospheric transmission algorithm for pulsed X-rays from high-altitude nuclear detonations based on scattering correction
5
作者 Ding-Han Zhu Xiong Zhang +3 位作者 Xiao-Qiang Li Peng Li Yan-Bin Wang Shuang Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第3期40-52,共13页
In high-altitude nuclear detonations,the proportion of pulsed X-ray energy can exceed 70%,making it a specific monitoring signal for such events.These pulsed X-rays can be captured using a satellite-borne X-ray detect... In high-altitude nuclear detonations,the proportion of pulsed X-ray energy can exceed 70%,making it a specific monitoring signal for such events.These pulsed X-rays can be captured using a satellite-borne X-ray detector following atmospheric transmission.To quantitatively analyze the effects of different satellite detection altitudes,burst heights,and transmission angles on the physical processes of X-ray transport and energy fluence,we developed an atmospheric transmission algorithm for pulsed X-rays from high-altitude nuclear detonations based on scattering correction.The proposed method is an improvement over the traditional analytical method that only computes direct-transmission X-rays.The traditional analytical method exhibits a maximum relative error of 67.79% compared with the Monte Carlo method.Our improved method reduces this error to within 10% under the same conditions,even reaching 1% in certain scenarios.Moreover,its computation time is 48,000 times faster than that of the Monte Carlo method.These results have important theoretical significance and engineering application value for designing satellite-borne nuclear detonation pulsed X-ray detectors,inverting nuclear detonation source terms,and assessing ionospheric effects. 展开更多
关键词 High-altitude nuclear detonation Atmospheric transmission Pulsed X-rays Scattering correction Analytical method Monte Carlo method
下载PDF
Fabrication, tribological and corrosion behaviors of detonation gun sprayed Fe-based metallic glass coating 被引量:7
6
作者 吴宏 兰小东 +5 位作者 刘咏 李飞 张卫东 陈紫瑾 宰雄飞 曾晗 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第6期1629-1637,共9页
A metallic glass coating with the composition of Fe51.33Cr14.9Mo25.67Y3.4C3.44B1.26 (mole fraction, %) on the Q235 stainless steel was developed by the detonation gun (D-gun) spraying process. The microstructure a... A metallic glass coating with the composition of Fe51.33Cr14.9Mo25.67Y3.4C3.44B1.26 (mole fraction, %) on the Q235 stainless steel was developed by the detonation gun (D-gun) spraying process. The microstructure and the phase aggregate were analyzed by scanning electron microscopy and X-ray diffractometry, respectively. Microhardness, wear resistance and corrosion behavior were assessed using a Vickers microhardness tester, a ball-on-disk wear testing machine and the electrochemical measurement method, respectively. Microstructural studies show that the coatings possess a densely layered structure with the porosity less than 2.1%. The tribological behavior of the coatings examined under dry conditions shows that their relative wear resistance is five times higher than that of the substrate material. Both adhesive wear and abrasive wear contribute to the friction, but the former is the dominant wear mechanism of the metallic glass coatings. The coatings exhibit low passive current density and extremely wide passive region in 3.5% NaCl solution, thus indicating excellent corrosion resistance. 展开更多
关键词 Fe-based metallic glass coating detonation gun spraying microstructure tribological behavior corrosion behavior
下载PDF
Microstructure, mechanical and oxidation characteristics of detonation gun and HVOF sprayed MCrAlYX coatings 被引量:3
7
作者 高俊国 汤智慧 +2 位作者 王长亮 郭孟秋 崔永静 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第3期817-823,共7页
Microstructure, mechanical property and oxidation resistance of MCrAlYX coatings prepared by detonation gun (D-gun) and HVOF spraying were investigated. Lamellar microstructure and uniform microstructure formed in D-g... Microstructure, mechanical property and oxidation resistance of MCrAlYX coatings prepared by detonation gun (D-gun) and HVOF spraying were investigated. Lamellar microstructure and uniform microstructure formed in D-gun sprayed MCrAlYX coating and HVOF sprayed coating, respectively. Element redistribution and formation of new phase took place during the detonation process. Besides, the porosity of D-gun sprayed coating was much lower than that of HVOF sprayed coating. On the mechanical property, the micro-hardnesses of the two coatings were in the same level (~HV 910). However, D-gun sprayed MCrAlYX coating exhibited larger standard deviation of microhardness due to its lamellar microstructure, and exhibited better bend bonding strength owing to the existence of residual compressive stress between the layers and particles. Meanwhile, due to the much more compact microstructure, D-gun sprayed MCrAlYX coating showed superior oxidation resistance to the HVOF sprayed coating. The continuous dense protective layer can form earlier in D-gun sprayed coating and thus suppress further oxidation and control the oxide thickness at a relatively low level. 展开更多
关键词 MCrAlYX coating detonation gun(D-gun) high velocity oxygen fuel(HVOF) MICROSTRUCTURE mechanical property oxidation resistance
下载PDF
Purification of Ultrafine Diamond Synthesized by Detonation 被引量:2
8
作者 仝毅 马峰 +1 位作者 恽寿榕 黄风雷 《Journal of Beijing Institute of Technology》 EI CAS 2000年第3期262-266,共5页
Ultrafine diamond (UFD) is produced at high pressure and high temperature generated by explosive detonation. We manage to search for a new technology to purify the UFD by using potassium permanganate and concentrated ... Ultrafine diamond (UFD) is produced at high pressure and high temperature generated by explosive detonation. We manage to search for a new technology to purify the UFD by using potassium permanganate and concentrated sulfuric acid as oxidant. The experiment results show that, compared with others, the purifying effect by this technology is satisfactory and is a more efficient, cheaper, and safer purification technology with less pollution and less investment. It can be put into commercial use. The related principle of the technology is discussed. It is believed that the atomic state oxygen produced during the reaction mechanism is an active substances which would react with the graphite——the main impurity existing in the detonation soot, and the reaction temperature is the key factor in the process. 展开更多
关键词 ultrafine diamond (UFD) detonation PURIFICATION potassium permanganate
下载PDF
DETONATION INITIATION INDUCED BY FLAME IMPLOSION AND SHOCK WAVE FOCUSING 被引量:2
9
作者 秦亚欣 于军力 高歌 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第1期57-65,共9页
Computational simulations on structurally different detonation generator are carried out to study the phenomena,the mechanism and the gas dynamics characteristics of flame implosion and shock wave focusing.Two-dimensi... Computational simulations on structurally different detonation generator are carried out to study the phenomena,the mechanism and the gas dynamics characteristics of flame implosion and shock wave focusing.Two-dimensional axisymmetric and unsteady Navier-Stokes equations are numerically solved and detailed chemical reaction kinetics of hydrogen/air mixture is used.The simulation results show that the laminar flame generated by low energy spark in the jet flame burner is accelerated under the narrow channel,the jet flame impinging on the axis strengthens shock wave and the shock wave enhances flame acceleration.Under the function of multiple shock waves and flame,a number of hot spots appear between the wave and the surface.The spots enlarge rapidly,thus forming an over-drive detonation with high pressure,and then declining to stable detonation.Through calculation and analysis,the length of detonation initiation and stable detonation are obtained,thus providing the useful information for further experimental investigations. 展开更多
关键词 detonation shock wave focusing flame implosion deflagration-to-detonation
下载PDF
Detonation Behavior of Intermolecular Explosives EAR
10
作者 王廷增 徐更光 +1 位作者 徐军培 刘云剑 《Journal of Beijing Institute of Technology》 EI CAS 2000年第3期341-346,共6页
In order to find out the detonation mechanism of intermolecular explosives (IMX), the EAR15 explosive is studied by the experiments and numerical modeling. The results show that EAR15 is a nonideal explosive, since in... In order to find out the detonation mechanism of intermolecular explosives (IMX), the EAR15 explosive is studied by the experiments and numerical modeling. The results show that EAR15 is a nonideal explosive, since in the detonation reaction zone both reacted and unreacted ammonium nitrate (AN) absorb the energy through the interface, resulting in the characteristic of nonideal detonation. In our tests, only 19%-49% active AN takes part in reaction, the rest behaves as the inert at the detonation wave front. 展开更多
关键词 EXPLOSIVE detonation nonideal explosive ammonium nitrate(AN)
下载PDF
Quantum Chemical Studies on Structure and Detonation Performance of Bis(2,2-dinitropropyl ethylene)formal
11
作者 闫淑卿 李小红 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2014年第1期45-50,I0003,共7页
Based on the full optimized molecular geometric structures via B3LYP/6-311+G(2d,p) method, a new gem-dinitro energetic plasticizer, bis(2,2-dinitropropyl ethylene)formal was investigated in order to search for hi... Based on the full optimized molecular geometric structures via B3LYP/6-311+G(2d,p) method, a new gem-dinitro energetic plasticizer, bis(2,2-dinitropropyl ethylene)formal was investigated in order to search for high-performance energetic material. IR spectrum, heat of formation, and detonation performances were predicted. The bond dissociation energies and bond orders for the weakest bonds were analyzed to investigate the thermal stability of the title compound. The results show that the four N-NO2 BDEs are nearly equal to the values of 164.38 kJ/mol, which shows that the title compound is a stable compound. The detonation velocity and pressure were evaluated by using Kamlet-Jacobs equations based on the theoretical density and condensed HOF. The crystal structure obtained by molec-ular mechanics belongs to P21 space group, with lattice parameters Z=2, a=13.8017 A, b=13.4072 A, c=5.5635 A. 展开更多
关键词 Density functional theory detonation property Thermal stability bis(2 2-dinitropropyl ethylene) formal
下载PDF
A numerical study of two-and three-dimensional detonation dynamics of pulse detonation engine by the CE/SE method 被引量:20
12
作者 ChunshengWeng JayP.Gore 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2005年第1期32-39,共8页
In this paper, the CE/SE method is developed to simulate the two- and three-dimensional flow-field of Pulse Detonation Engine (PDE). The conservation equations with stiff source terms for chemical reaction are solved ... In this paper, the CE/SE method is developed to simulate the two- and three-dimensional flow-field of Pulse Detonation Engine (PDE). The conservation equations with stiff source terms for chemical reaction are solved in two steps. The detailed analysis of computational results of a PDE with a single detonation tube and a PDE with five detonation tubes are given in this paper. Complex wave systems are observed inside and outside a PDE. For a PDE with 5 detonation tubes, there is a big bow shock produced from a number of little shocks near the open ends of tubes. A lot of vortexes interact with shocks and a large expansion wave propagates forward and backward with respect to the PDE in a semi-oval shape. 展开更多
关键词 pulse detonation engine detonation shock numerical simulation CE/SE method
下载PDF
Verification and validation of detonation modeling 被引量:6
13
作者 Xiao Liang Rui-li Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第3期398-408,共11页
The mathematical model used to describe the detonation multi-physics phenomenon is usually given by highly coupled nonlinear partial differential equations. Numerical simulation and the computer aided engineering (CAE... The mathematical model used to describe the detonation multi-physics phenomenon is usually given by highly coupled nonlinear partial differential equations. Numerical simulation and the computer aided engineering (CAE) technique has become the third pillar of detonation research, along with theory and experiment, due to the detonation phenomenon is difficult to explain by the theoretical analysis, and the cost required to accredit the reliability of detonation products is very high, even some physical experiments of detonation are impossible. The numerical simulation technique can solve these complex problems in the real situation repeatedly and reduce the design cost and time stunningly. But the reliability of numerical simulation software and the serviceability of the computational result seriously hinders the extension, application and the self-restoration of the simulation software, restricts its independently innovational ability. This article deals with the physical modeling, numerical simulation, and software development of detonation in a unified way. Verification and validation and uncertainty quantification (V&V&UQ) is an important approach in ensuring the credibility of the modeling and simulation of detonation. V&V of detonation is based on our independently developed detonation multiphysics software-LAD2D. We propose the verification method based on mathematical theory and program function as well as availability of its program execution. Validation is executed by comparing with the experiment data. At last, we propose the future prospect of numerical simulation software and the CAE technique, and we also pay attention to the research direction of V&V&UQ. 展开更多
关键词 VERIFICATION and validation detonation EQUATION of state detonation DIFFRACTION REACTION rate LAW
下载PDF
Wave dynamic processes in cellular detonation reflection from wedges 被引量:11
14
作者 Zongmin Hu Zonglin Jiang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2007年第1期33-41,共9页
When the cell width of the incident detonation wave (IDW) is comparable to or larger than the Mach stem height, self-similarity will fail during IDW reflection from a wedge surface. In this paper, the detonation ref... When the cell width of the incident detonation wave (IDW) is comparable to or larger than the Mach stem height, self-similarity will fail during IDW reflection from a wedge surface. In this paper, the detonation reflection from wedges is investigated for the wave dynamic processes occurring in the wave front, including transverse shock motion and detonation cell variations behind the Mach stem. A detailed reaction model is implemented to simulate two-dimensional cellular detonations in stoichiometric mixtures of H2/O2 diluted by Argon. The numerical results show that the transverse waves, which cross the triple point trajectory of Mach reflection, travel along the Mach stem and reflect back from the wedge surface, control the size of the cells in the region swept by the Mach stem. It is the energy carried by these transverse waves that sustains the triple-wave-collision with a higher frequency within the over-driven Mach stem. In some cases, local wave dynamic processes and wave structures play a dominant role in determining the pattern of cellular record, leading to the fact that the cellular patterns after the Mach stem exhibit some peculiar modes. 展开更多
关键词 Cellular detonation WEDGE Reflection Wave dynamics SIMULATION
下载PDF
Application of Two-dimensional Viscous CE/SE Method in Calculation of Two-phase Detonation 被引量:6
15
作者 马丹花 翁春生 《Defence Technology(防务技术)》 SCIE EI CAS 2010年第1期5-9,共5页
The method of two-dimensional viscous space-time conservation element and solution element (CE/SE) can be used to calculate the gas-liquid two-phase interior flow field in pulse detonation engine (PDE). In this paper,... The method of two-dimensional viscous space-time conservation element and solution element (CE/SE) can be used to calculate the gas-liquid two-phase interior flow field in pulse detonation engine (PDE). In this paper, the evolution of the detonation wave and the distribution of its physical parameters were analyzed. The numerical results show that the change of axial velocity of gas is the same as that of detonation pressure. The larger the liquid droplet radius is, the longer the time to get stable detonation wave is. The calculated results coincide with the experimented results better. 展开更多
关键词 explosion mechanics pulse detonation engine interior ballistics CE/SE method two-phase detonation numerical calculation
下载PDF
Formation and corrosion behavior of Fe-based amorphous metallic coatings prepared by detonation gun spraying 被引量:10
16
作者 周正 王鲁 +1 位作者 王富耻 柳彦博 《中国有色金属学会会刊:英文版》 CSCD 2009年第S3期634-638,共5页
Amorphous metallic coatings with a composition of Fe48Cr15Mo14C15B6Y2 were prepared by detonation gun spraying process. Microstructural studies show that the coatings present a densely layered structure typical of the... Amorphous metallic coatings with a composition of Fe48Cr15Mo14C15B6Y2 were prepared by detonation gun spraying process. Microstructural studies show that the coatings present a densely layered structure typical of thermally sprayed deposits with the porosity below 2%. Both crystallization and oxidation occurred obviously during spraying process, so that the amorphous fraction of the coatings decreased to 54% compared with fully amorphous alloy ribbons of the same component. Corrosion behavior of the amorphous coatings was investigated by electrochemical measurement. The results show that the coatings exhibit extremely wide passive region and low passive current density in 3.5% NaCl (mass fraction) and 1 mol/L HCl solutions, which illustrates excellent ability to resist localized corrosion. 展开更多
关键词 FE-BASED AMORPHOUS coating detonation GUN microstructure corrosion behavior
下载PDF
Periodic oscillation and fine structure of wedge-induced oblique detonation waves 被引量:11
17
作者 Ming-Yue Gui Bao-Chun Fan Gang Dong 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第6期922-928,共7页
An oblique detonation wave for a Mach 7 inlet flow over a long enough wedge of 30 turning angle is simulated numerically using Euler equation and one-step rection model.The fifth-order WENO scheme is adopted to captur... An oblique detonation wave for a Mach 7 inlet flow over a long enough wedge of 30 turning angle is simulated numerically using Euler equation and one-step rection model.The fifth-order WENO scheme is adopted to capture the shock wave.The numerical results show that with the compression of the wedge wall the detonation wave front structure is divided into three sections:the ZND model-like strcuture,single-sided triple point structure and dual-headed triple point strucuture.The first structure is the smooth straight,and the second has the characteristic of the triple points propagating dowanstream only with the same velocity,while the dual-headed triple point structure is very complicated.The detonation waves facing upstream and downstream propagate with different velocities,in which the periodic collisions of the triple points cause the oscillation of the detonation wave front.This oscillation process has temporal and spatial periodicity.In addition,the triple point trace are recorded to obtain different cell structures in three sections. 展开更多
关键词 Oblique detonation wave Wedge - Periodic oscillation Fine structure
下载PDF
Theoretical analysis on deflagration-to-detonation transition 被引量:5
18
作者 Yun-Feng Liu Huan Shen +1 位作者 De-Liang Zhang Zong-Lin Jing 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第8期346-349,共4页
The study on deflagration-to-detonation transition (DDT) is very important because this mechanism has relevance to safety issues in industries, where combustible premixed gases are in general use. However, the quant... The study on deflagration-to-detonation transition (DDT) is very important because this mechanism has relevance to safety issues in industries, where combustible premixed gases are in general use. However, the quantitative prediction of DDT is one of the major unsolved problems in combustion and detonation theory to date. In this paper, the DDT process is studied theoretically and the critical condition is given by a concise theoretical expression. The results show that a deflagration wave propagating with about 60% Chapman-Jouguet (C J) detonation velocity is a critical condition. This velocity is the maximum propagating velocity of a deflagration wave and almost equal to the sound speed of combustion products. When this critical condition is reached, a CJ detonation is triggered immediately. This is the quantitative criteria of the DDT process. 展开更多
关键词 DEFLAGRATION detonation deflagration-to-detonation transition
下载PDF
The criterion of the existence or inexistence of transverse shock wave at wedge supported oblique detonation wave 被引量:7
19
作者 Ai-Feng Wang Wei Zhao Zong-Lin Jiang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第5期611-619,共9页
A simplified theoretic method and numerical simulations were carried out to investigate the characterization of propagation of transverse shock wave at wedge supported oblique detonation wave.After solution validation... A simplified theoretic method and numerical simulations were carried out to investigate the characterization of propagation of transverse shock wave at wedge supported oblique detonation wave.After solution validation,a criterion which is associated with the ratio Φ (u 2 /u CJ) of existence or inexistence of the transverse shock wave at the region of the primary triple was deduced systematically by 38 cases.It is observed that for abrupt oblique shock wave (OSW)/oblique detonation wave (ODW) transition,a transverse shock wave is generated at the region of the primary triple when Φ 〈 1,however,such a transverse shock wave does not take place for the smooth OSW/ODW transition when Φ 〉 1.The parameter Φ can be expressed as the Mach number behind the ODW front for stable CJ detonation.When 0.9 〈 Φ 〈 1.0,the reflected shock wave can pass across the contact discontinuity and interact with transverse waves which are originating from the ODW front.When 0.8 〈 Φ 〈 0.9,the reflected shock wave can not pass across the contact discontinuity and only reflects at the contact discontinuity.The condition (0.8 〈 Φ 〈 0.9) agrees well with the ratio (D ave /D CJ) in the critical detonation. 展开更多
关键词 Oblique detonation wave Transverse shock wave Oblique shock wave Transition Numerical simulations
下载PDF
Insensitive high explosives:Ⅳ. Nitroguanidine-Initiation & detonation 被引量:3
20
作者 Ernst-Christian Koch 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第4期467-487,共21页
This paper reviews the detonative properties of low bulk density(LBD),high bulk density(HBD)Nitroguanidine(NGu)(1),CAS-No:[556-88-7]and 82 explosive formulations based on NGu reported in the public domain.To rank the ... This paper reviews the detonative properties of low bulk density(LBD),high bulk density(HBD)Nitroguanidine(NGu)(1),CAS-No:[556-88-7]and 82 explosive formulations based on NGu reported in the public domain.To rank the performance of those formulations they are compared with 15 reference compositions containing both standard high explosives such as octogen(HMX)(2),hexogen(RDX)(3),pentaerythritol tetranitrate(PETN)(4),2,4,6-trinitrotoluene(TNT)(5)as well as insensitive high explosives such as 3-nitro-1,2,4-triazolone(NTO)(6),1,3,5-triamino-2,4,6-trinitrobenzene(TATB)(7),1,1-diamino-2,2-dinitroethylene(FOX-7)(8)and N-Guanylurea dinitramide(FOX 12)(9).NGu based formulations are superior to those based on FOX-12 or TATB and are a close match with FOX-7 based explosives,the latter just having higher Gurney Energies(-10%)and slightly higher detonation pressure(+2%).NGu based explosives even reach up to 78% of the detonation pressure,82% Gurney energy and up to 95% of detonation velocity of HMX.LBD-NGu dissolves in many melt cast eutectics forming dense charges thereby eliminating the need for costly High Bulk Density NGu.Nitroguanidine based formulations are at the rock bottom of sensitiveness among all the above-mentioned explosives which contributes to the safety of these formulations.The review gives 132 references to the public domain.For a review on the synthesis spectroscopy and sensitiveness of Nitroguanidine see Ref.[1]. 展开更多
关键词 Cook-off detonation Insensitive munitions NITROGUANIDINE Shock sensitvity
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部