In this paper, the generalized oscillator strengths (GOSs) of excitations of atomic sodium from ground state to 2p63s0 (3p, 4p, 5p, 6p) states, immersed in Debye plasma, were calculated by using wavefunctions which we...In this paper, the generalized oscillator strengths (GOSs) of excitations of atomic sodium from ground state to 2p63s0 (3p, 4p, 5p, 6p) states, immersed in Debye plasma, were calculated by using wavefunctions which were obtained numerically from the restricted Hartree-Fock (RHF) equation. This RHF equation employs the local density approach for exchange interactions including plasma Debye screening. Theoretical RHF and random phase approximation with exchange (RPAE) velocity calculations have shown that the GOSs for excitations to 3 s0(3 p,4 p,5 p,6 p)depend on the plasma Debye screening effects, as shown by the reduction in the GOS amplitude with decreasing Debye length λD. The agreement between the present RPAE V results for the transitions 3 s→3 s0(3 p,4 p,5 p)and the length calculations of Martínez-Flores was satisfactory. Correlation effects were found quite to be significant in the vicinity of the maxima of the GOS of the 3 s→3 s0(4 p,5 p,6 p)excitations by using the RPAE V approach. We note the poor influence of many electron correlations on the GOS of (3 s→3 p)transition with the same principal quantum number. Finally, we comment that the RPAE V calculations are useful in investigating electron correlation effects on the transition GOS of atomic sodium planted in Debye plasma. The present velocity results also reveal that the 3 s→3 s0(5p, 6p)transition GOSs tend to be delocalized due to more significant screening effects at Debye lengths λD=20and 30 a.u. for excited subshells 5p and 6p, respectively. We report here novel results of GOS for 3 s→3 s06ptransition obtained from different Debye lengths.展开更多
The flexible rolling process(FRP) is a novel three-dimensional(3 D) forming process that combines the multipoint and traditional rolling forming. The principle of FRP is based on thickness thinning, so the deformation...The flexible rolling process(FRP) is a novel three-dimensional(3 D) forming process that combines the multipoint and traditional rolling forming. The principle of FRP is based on thickness thinning, so the deformation path significantly impacts the forming effect. In this study, the multistep forming process with different deformation paths was introduced to improve the forming effect of FRP. For instance, with the convex surface part, three finite element models of multistep FRP(MSFRP) were established. The corresponding numerical simulations and forming experiments performed among different deformation paths showed the surface part with a longer effective forming region was obtained and the forming regions with more steps in MSFRP were smoother. Thus, the sheet-metal utilization rate was greatly improved. Moreover, the MSFRP can improve the longitudinal bending effect dramatically and thereby endowing the forming part with a better forming effect. Therefore, MSFRP is a prospective method for broad applications.展开更多
Based on summarizing of the effect of mantle-derived fluid on the formation of ores, especially on gold ore, and with the latest investigations, such as the formation of ore from the action of shallow-deep fluid, the ...Based on summarizing of the effect of mantle-derived fluid on the formation of ores, especially on gold ore, and with the latest investigations, such as the formation of ore from the action of shallow-deep fluid, the transportation effect of the thermal energy by mantle-derived fluid, this paper mainly aims at the effect of mantle-derived fluid on the generation of hydrocarbons. With the proof from geochemistry and fluid inclusion, it was suggested that the mantle-derived fluid not only supplied source materials for hydrocarbons, but also supplied essential energy and matter necessary for the generation of hydrocarbons. The mantle-derived fluid had a good effect, but at the same time it had an adverse effect under specific conditions, on the formation of reservoirs. This paper also discusses the future direction and significance of studying mantle-derived fluid.展开更多
Temperature is one of the key parameters for BT20 titanium alloy cylindrical workpiece manufactured by vacuum hot bulge forming. A two-dimensional nonlinear thermo-mechanical coupled FE model was established. Numerica...Temperature is one of the key parameters for BT20 titanium alloy cylindrical workpiece manufactured by vacuum hot bulge forming. A two-dimensional nonlinear thermo-mechanical coupled FE model was established. Numerical simulation of vacuum hot bulge forming process of titanium alloy cylindrical workpiece was carried out using FE analysis software MSC Marc. The effects of temperature on vacuum hot bulge forming of BT20 titanium alloy cylindrical workpiece were analyzed by numerical simulation. The simulated results show that the Y-direction displacement and the equivalent plastic strain of the workpiece increase with increasing bulge temperature. The residual stress decreases with increasing bulge temperature. The optimal temperature range of BT20 titanium alloy during vacuum hot bulge forming is 750-850 ℃. The corresponding experiments were carried out. The simulated results agreed well with the experimental results.展开更多
To search for the new scanning plan that can reduce the bending angle variation and the bending curvatures of the bending edge, an explanation for the causes of the edge effects was given. Six new scanning strategies ...To search for the new scanning plan that can reduce the bending angle variation and the bending curvatures of the bending edge, an explanation for the causes of the edge effects was given. Six new scanning strategies were proposed through the change of the scanning length of middle and two ends based on the above analyses. Numerical simulations were carried out to study the edge effects using the six new scanning strategies. The simulation results show that the new scanning strategies can improve effectively the quality of the forming parts.展开更多
Effective Hamiltonians in periodically driven systems have received widespread attention for realization of novel quantum phases, non-equilibrium phase transition, and Majorana mode. Recently, the study of effective H...Effective Hamiltonians in periodically driven systems have received widespread attention for realization of novel quantum phases, non-equilibrium phase transition, and Majorana mode. Recently, the study of effective Hamiltonian using various methods has gained great interest. We consider a vector differential equation of motion to derive the effective Hamiltonian for any periodically driven two-level system, and the dynamics of the spin vector are an evolution under the Bloch sphere. Here, we investigate the properties of this equation and show that a sudden change of the effective Hamiltonian is expected. Furthermore, we present several exact relations, whose expressions are independent of the different starting points. Moreover, we deduce the effective Hamiltonian from the high-frequency limit, which approximately equals the results in previous studies. Our results show that the vector differential equation of motion is not affected by a convergence problem, and thus, can be used to numerically investigate the effective models in any periodic modulating system. Finally, we anticipate that the proposed method can be applied to experimental platforms that require time-periodic modulation, such as ultracold atoms and optical lattices.展开更多
The effect of the deformation condition on the axial compressive precision forming process of tube with curling die was investigated by using a rigid-plastic FEM. The results show that the forming accuracy depends mai...The effect of the deformation condition on the axial compressive precision forming process of tube with curling die was investigated by using a rigid-plastic FEM. The results show that the forming accuracy depends mainly on geometric condition rp/d0, little on tube material properties and friction condition; the relative gap △/2rp of double-walled tubes obtained decreases with Increasing rp/d0, and there is a parameter k for a given to/do or rp/t0, when rp/d0 >k, △/2rp< 1, otherwise △/2rp>1.展开更多
A new concept referred to the non-synchronous deformation effect of particle in sheet metal forming is proposed. The results of finite element analysis show that the flow resistance of sheet metal can be effectively r...A new concept referred to the non-synchronous deformation effect of particle in sheet metal forming is proposed. The results of finite element analysis show that the flow resistance of sheet metal can be effectively reduced and thus the forming property can be greatly improved if the moving and deformation state of the neighboring elements with equal perpendicular distance to the entrance contour of die is non-synchronous. Experiment tests are presented and the results agree well with FEA simulation. In addition, the mechanism of the non-synchronous effect is analyzed in detail.展开更多
调谐黏滞质量阻尼器(Tuned Viscous Mass Damper,TVMD)是一种有效的被动惯容减震装置,本文针对地震作用下建筑结构TVMD阻尼比增效效应与优化设计展开研究。将TVMD对结构自身阻尼耗能功率的控制效果归纳为TVMD等效附加阻尼比,并基于随机...调谐黏滞质量阻尼器(Tuned Viscous Mass Damper,TVMD)是一种有效的被动惯容减震装置,本文针对地震作用下建筑结构TVMD阻尼比增效效应与优化设计展开研究。将TVMD对结构自身阻尼耗能功率的控制效果归纳为TVMD等效附加阻尼比,并基于随机振动理论推导了等效附加阻尼比的理论表达式。为了使TVMD更具实际应用价值,TVMD理论上应取得比同阻尼系数的黏滞阻尼器(VD)更大的等效附加阻尼比,这一现象定义为TVMD阻尼比增效效应,并定义了阻尼比增效系数来量化评估阻尼比增效效应。将等效附加阻尼比和阻尼比增效系数均作为优化目标,提出了TVMD最优设计参数理论解。参数分析结果表明,本文解具有良好的稳定性和适用性,为了更高效地发挥阻尼比增效效应,推荐TVMD质量比不超过0.3或阻尼比不超过0.1。以某七层标准钢框架结构作为工程算例展示了TVMD设计流程,并验证了本文解的有效性和优越性。算例分析结果表明,使用本文解设计TVMD能显著放大其阻尼元件变形,表现出了理想的阻尼比增效效应。与传统解相比,本文解还具有另一个明显优势,即保证TVMD的减震效果优于同阻尼系数的VD,不存在减震效率问题。展开更多
文摘In this paper, the generalized oscillator strengths (GOSs) of excitations of atomic sodium from ground state to 2p63s0 (3p, 4p, 5p, 6p) states, immersed in Debye plasma, were calculated by using wavefunctions which were obtained numerically from the restricted Hartree-Fock (RHF) equation. This RHF equation employs the local density approach for exchange interactions including plasma Debye screening. Theoretical RHF and random phase approximation with exchange (RPAE) velocity calculations have shown that the GOSs for excitations to 3 s0(3 p,4 p,5 p,6 p)depend on the plasma Debye screening effects, as shown by the reduction in the GOS amplitude with decreasing Debye length λD. The agreement between the present RPAE V results for the transitions 3 s→3 s0(3 p,4 p,5 p)and the length calculations of Martínez-Flores was satisfactory. Correlation effects were found quite to be significant in the vicinity of the maxima of the GOS of the 3 s→3 s0(4 p,5 p,6 p)excitations by using the RPAE V approach. We note the poor influence of many electron correlations on the GOS of (3 s→3 p)transition with the same principal quantum number. Finally, we comment that the RPAE V calculations are useful in investigating electron correlation effects on the transition GOS of atomic sodium planted in Debye plasma. The present velocity results also reveal that the 3 s→3 s0(5p, 6p)transition GOSs tend to be delocalized due to more significant screening effects at Debye lengths λD=20and 30 a.u. for excited subshells 5p and 6p, respectively. We report here novel results of GOS for 3 s→3 s06ptransition obtained from different Debye lengths.
基金support given by the National Natural Science Foundation of China(No.51275202)
文摘The flexible rolling process(FRP) is a novel three-dimensional(3 D) forming process that combines the multipoint and traditional rolling forming. The principle of FRP is based on thickness thinning, so the deformation path significantly impacts the forming effect. In this study, the multistep forming process with different deformation paths was introduced to improve the forming effect of FRP. For instance, with the convex surface part, three finite element models of multistep FRP(MSFRP) were established. The corresponding numerical simulations and forming experiments performed among different deformation paths showed the surface part with a longer effective forming region was obtained and the forming regions with more steps in MSFRP were smoother. Thus, the sheet-metal utilization rate was greatly improved. Moreover, the MSFRP can improve the longitudinal bending effect dramatically and thereby endowing the forming part with a better forming effect. Therefore, MSFRP is a prospective method for broad applications.
文摘Based on summarizing of the effect of mantle-derived fluid on the formation of ores, especially on gold ore, and with the latest investigations, such as the formation of ore from the action of shallow-deep fluid, the transportation effect of the thermal energy by mantle-derived fluid, this paper mainly aims at the effect of mantle-derived fluid on the generation of hydrocarbons. With the proof from geochemistry and fluid inclusion, it was suggested that the mantle-derived fluid not only supplied source materials for hydrocarbons, but also supplied essential energy and matter necessary for the generation of hydrocarbons. The mantle-derived fluid had a good effect, but at the same time it had an adverse effect under specific conditions, on the formation of reservoirs. This paper also discusses the future direction and significance of studying mantle-derived fluid.
文摘Temperature is one of the key parameters for BT20 titanium alloy cylindrical workpiece manufactured by vacuum hot bulge forming. A two-dimensional nonlinear thermo-mechanical coupled FE model was established. Numerical simulation of vacuum hot bulge forming process of titanium alloy cylindrical workpiece was carried out using FE analysis software MSC Marc. The effects of temperature on vacuum hot bulge forming of BT20 titanium alloy cylindrical workpiece were analyzed by numerical simulation. The simulated results show that the Y-direction displacement and the equivalent plastic strain of the workpiece increase with increasing bulge temperature. The residual stress decreases with increasing bulge temperature. The optimal temperature range of BT20 titanium alloy during vacuum hot bulge forming is 750-850 ℃. The corresponding experiments were carried out. The simulated results agreed well with the experimental results.
文摘To search for the new scanning plan that can reduce the bending angle variation and the bending curvatures of the bending edge, an explanation for the causes of the edge effects was given. Six new scanning strategies were proposed through the change of the scanning length of middle and two ends based on the above analyses. Numerical simulations were carried out to study the edge effects using the six new scanning strategies. The simulation results show that the new scanning strategies can improve effectively the quality of the forming parts.
基金supported by the National Natural Science Foundation of China (Grant No. 11774328)。
文摘Effective Hamiltonians in periodically driven systems have received widespread attention for realization of novel quantum phases, non-equilibrium phase transition, and Majorana mode. Recently, the study of effective Hamiltonian using various methods has gained great interest. We consider a vector differential equation of motion to derive the effective Hamiltonian for any periodically driven two-level system, and the dynamics of the spin vector are an evolution under the Bloch sphere. Here, we investigate the properties of this equation and show that a sudden change of the effective Hamiltonian is expected. Furthermore, we present several exact relations, whose expressions are independent of the different starting points. Moreover, we deduce the effective Hamiltonian from the high-frequency limit, which approximately equals the results in previous studies. Our results show that the vector differential equation of motion is not affected by a convergence problem, and thus, can be used to numerically investigate the effective models in any periodic modulating system. Finally, we anticipate that the proposed method can be applied to experimental platforms that require time-periodic modulation, such as ultracold atoms and optical lattices.
基金The authors would like to thank NSFC for support toenable the performing of this research (No. 59775055).
文摘The effect of the deformation condition on the axial compressive precision forming process of tube with curling die was investigated by using a rigid-plastic FEM. The results show that the forming accuracy depends mainly on geometric condition rp/d0, little on tube material properties and friction condition; the relative gap △/2rp of double-walled tubes obtained decreases with Increasing rp/d0, and there is a parameter k for a given to/do or rp/t0, when rp/d0 >k, △/2rp< 1, otherwise △/2rp>1.
文摘A new concept referred to the non-synchronous deformation effect of particle in sheet metal forming is proposed. The results of finite element analysis show that the flow resistance of sheet metal can be effectively reduced and thus the forming property can be greatly improved if the moving and deformation state of the neighboring elements with equal perpendicular distance to the entrance contour of die is non-synchronous. Experiment tests are presented and the results agree well with FEA simulation. In addition, the mechanism of the non-synchronous effect is analyzed in detail.
文摘调谐黏滞质量阻尼器(Tuned Viscous Mass Damper,TVMD)是一种有效的被动惯容减震装置,本文针对地震作用下建筑结构TVMD阻尼比增效效应与优化设计展开研究。将TVMD对结构自身阻尼耗能功率的控制效果归纳为TVMD等效附加阻尼比,并基于随机振动理论推导了等效附加阻尼比的理论表达式。为了使TVMD更具实际应用价值,TVMD理论上应取得比同阻尼系数的黏滞阻尼器(VD)更大的等效附加阻尼比,这一现象定义为TVMD阻尼比增效效应,并定义了阻尼比增效系数来量化评估阻尼比增效效应。将等效附加阻尼比和阻尼比增效系数均作为优化目标,提出了TVMD最优设计参数理论解。参数分析结果表明,本文解具有良好的稳定性和适用性,为了更高效地发挥阻尼比增效效应,推荐TVMD质量比不超过0.3或阻尼比不超过0.1。以某七层标准钢框架结构作为工程算例展示了TVMD设计流程,并验证了本文解的有效性和优越性。算例分析结果表明,使用本文解设计TVMD能显著放大其阻尼元件变形,表现出了理想的阻尼比增效效应。与传统解相比,本文解还具有另一个明显优势,即保证TVMD的减震效果优于同阻尼系数的VD,不存在减震效率问题。