Electrocatalytic reduction reactions,powered by clean energy sources such as solar energy and wind,offer a sustainable method for converting inexpensive feedstocks(e.g.,CO_(2),N_(2)/NO_(x),organics,and O_(2))into high...Electrocatalytic reduction reactions,powered by clean energy sources such as solar energy and wind,offer a sustainable method for converting inexpensive feedstocks(e.g.,CO_(2),N_(2)/NO_(x),organics,and O_(2))into high-value-added chemicals or fuels.The design and modification of electrocatalysts have been widely implemented to improve their performance in these reactions.However,bottle-necks are encountered,making it challenging to further improve performance through catalyst development alone.Recently,cations in the electrolyte have emerged as critical factors for tuning both the activity and product selectivity of reduction reactions.This review summarizes recent advances in understanding the role of cation effects in electrocatalytic reduction reactions.First,we introduce the mechanisms underlying cation effects.We then provide a comprehensive overview of their application in electroreduction reactions.Characterization techniques and theoretical calcula-tion methods for studying cation effects are also discussed.Finally,we address remaining challeng-es and future perspectives in this field.We hope that this review offers fundamental insights and design guidance for utilizing cation effects,thereby advancing their development.展开更多
The electrochemical reduction of CO_(2)(eCO_(2)R)under ambient conditions is crucial for reducing carbon emissions and achieving carbon neutrality.Despite progress with alkaline and neutral electrolytes,their efficien...The electrochemical reduction of CO_(2)(eCO_(2)R)under ambient conditions is crucial for reducing carbon emissions and achieving carbon neutrality.Despite progress with alkaline and neutral electrolytes,their efficiency is limited by(bi)carbonates formation.Acidic media have emerged as a solution,addressing the(bi)carbonates challenge but introducing the issue of the hydrogen evolu-tion reaction(HER),which reduces CO_(2) conversion efficiency in acidic environments.This review focuses on enhancing the selectivity of acidic CO_(2) electrolysis.It commences with an overview of the latest advancements in acidic CO_(2) electrolysis,focusing on product selectivity and electrocatalytic activity enhancements.It then delves into the critical factors shaping selectivity in acidic CO_(2) electrolysis,with a special emphasis on the influence of cations and catalyst design.Finally,the research challenges and personal perspectives of acidic CO_(2) electrolysis are suggested.展开更多
The change color effect of gold nanoparticle solutions was studied by means of resonance scattering and absorption spectrometry and scan electron microscopy. The red Au nanoparticles with a size of 10 nm exhibit a res...The change color effect of gold nanoparticle solutions was studied by means of resonance scattering and absorption spectrometry and scan electron microscopy. The red Au nanoparticles with a size of 10 nm exhibit a resonance absorption peak and a resonance scattering peak all at 525 nm. After some inorganic electrolyte was added to a red Au nanoparticles solution, the color of the solution became blue and the absorbance at (600_700) nm was significantly increased. The ratio of the concentration of monovalent cations, at which the resonance scattering of the system at 525 nm is maximal to that of divalent cations, is in the range of 100∶1_100∶1.8. It is in good agreement with the Schulze-Hardy rule of the coagulation value of electrolyte. After adding some cationic surfactants to the above solution, the color of the solution is in deep blue, with two resonance absorption peaks at 550 and 680 nm, and a greatly enhanced resonance scattering peak at 525 nm. The experiments demonstrate that the stronger the hydrophobicity of the cationic surfactant is, the stronger the change color effect of the Au nanoparticle solution promoted by cationic surfactant is. The change color effect of Au nanoparticle solution is resulted from the increased diameter of Au nanoparticles, and the changes of resonance absorption peak and resonance scattering.展开更多
The electrical conductivities (ECs) of suspensions containing 25 and 30 gkg^(-1) solids prepared from the electrodialyzed clay fraction (< 2μm in diameter) of latosol,yellow-brown soil, and black soil, dispersed i...The electrical conductivities (ECs) of suspensions containing 25 and 30 gkg^(-1) solids prepared from the electrodialyzed clay fraction (< 2μm in diameter) of latosol,yellow-brown soil, and black soil, dispersed in various nitrate solutions having concentrations of 1X 10^(-4)/z mol L^(-1), where z is the valence, and in distilled water, were measured at fieldstrengths ranging from 14 kV cm^(-1) to 210 kV cm^(-1). On the basis of analyses of the chargedensity and exchangeable ion composition on the surfaces of soil particles in the suspensions, andof the characters of the EC-field strength curves of the various suspensions, it was inferred thatthe increment of EC (ΔEC) and/or relative electrical conductivity (REC) can indicate the bondingstrength between cations and soil particles. The bonding strengths of various cations with the soilsdiminished in the order: K^+ > Zn^(2+) > Mg^(2+) = Ca^(2+) > Na^+ for latosol, Ca^(2+) > Zn^(2+) >Mg^(2+) = K^+ > Na^+ for yellow-brown soil, and Zn^(2+) ≥ Ca^(2+) ≥ Mg^(2+) > K^+ > Na^+ for blacksoil.展开更多
In this contribution,we report the cooperative structure-directing effect of choline hydroxide and aluminosilicate*BEA zeolite in the synthesis of aluminogermanosilicate IWR zeolites for the first time.*BEA zeolites,a...In this contribution,we report the cooperative structure-directing effect of choline hydroxide and aluminosilicate*BEA zeolite in the synthesis of aluminogermanosilicate IWR zeolites for the first time.*BEA zeolites,at variance with any other aluminosilicate zeolites,can serve as heterogeneous seeds for the growth of IWR zeolites and play a cooperative structure-directing role.The crystallization process was investigated using multiple techniques to characterize a series of solid products obtained with various crystallization times.The experiments clearly showed the dissolution of the*BEA zeolite and of an intermediate CDO-type structure.A plausible mechanism for the novel cooperative synthesis has been proposed.The crystallization of the IWR zeolite involves several steps,among which the crucial one is believed to be the reassembly of the building units produced from the decomposition of*BEA zeolite seeds,induced by choline molecules.Having similar structure and common building units(four-,five-,and six-membered rings)with the IWR zeolite,the*BEA zeolite is capable of promoting the reassembly of the building units and can thus play a cooperative structure-directing role.By highlighting the cooperative structure-directing effect of organic molecules and heterogeneous seeds,this study opens up new perspectives for the synthesis of target zeolites that are difficult to prepare by traditional methods.This new synthetic route is also expected to shed light on the discovery of novel zeolites.展开更多
The electrocatalytic CO_(2)reduction reaction(CO_(2)RR)has attracted increasing attention in recentyears.Practical electrocatalysis of CO_(2)RR must be carried out in aqueous solutions containing electrolytesof alkali...The electrocatalytic CO_(2)reduction reaction(CO_(2)RR)has attracted increasing attention in recentyears.Practical electrocatalysis of CO_(2)RR must be carried out in aqueous solutions containing electrolytesof alkali metal cations such as sodium and potassium.Although considerable efforts havebeen made to design efficient electrocatalysts for CO_(2)RR and to investigate the structure–activityrelationships using molecular model complexes,only a few studies have been investigated the effectof alkali metal cations on electrocatalytic CO_(2)RR.In this study,we report the effect of alkali metalcations(Na^(+)and K^(+))on electrocatalytic CO_(2)RR with Fe porphyrins.By running CO_(2)RR electrocatalysisin dimethylformamide(DMF),we found that the addition of Na^(+)or K^(+)considerably improves thecatalytic activity of Fe chloride tetrakis(3,4,5‐trimethoxyphenyl)porphyrin(FeP).Based on thisresult,we synthesized an Fe porphyrin^(N)18C6‐FeP bearing a tethered 1‐aza‐18‐crown‐6‐ether(^(N)18C6)group at the second coordination sphere of the Fe site.We showed that with the tethered^(N)18C6 to bind Na^(+)or K^(+),^(N)18C6‐FeP is more active than FeP for electrocatalytic CO_(2)RR.This workdemonstrates the positive effect of alkali metal cations to improve CO_(2)RR electrocatalysis,which isvaluable for the rational design of new efficient catalysts.展开更多
The electronic structures of PF and PF+ are calculated with the high-level configuration interaction method. To improve the precision of calculations, the spin-orbit coupling effect, the scalar relativistic effect, a...The electronic structures of PF and PF+ are calculated with the high-level configuration interaction method. To improve the precision of calculations, the spin-orbit coupling effect, the scalar relativistic effect, and the Davidson correction(q-Q) are also considered. The spectroscopic parameters of bound states are derived by the electronic structures of PF and PF+, which are in good accordance with the measurements. The transition dipole moments of spin-allowed transitions are evaluated, and the radiative lifetimes of several A S states of PF and PF+ are obtained.展开更多
A viscoelastic system formed by the solutions of di(2-hydroxyl-dimethylene ether)-α,ω, y-triple ( dimethyloctadecylammonium chlorine ) ( 18-4 ( OH ) -18-4 ( OH ) -18 ) is proposed to solve the problems of ...A viscoelastic system formed by the solutions of di(2-hydroxyl-dimethylene ether)-α,ω, y-triple ( dimethyloctadecylammonium chlorine ) ( 18-4 ( OH ) -18-4 ( OH ) -18 ) is proposed to solve the problems of poor temperature and shear resistances of clean fracturing fluid. The apparent viscosity of 18-4( OH)-18-4( OH)-18 solution affected by inorganic salt, hydrotropic salt and their mixtures is investigated using steady state measurements. Meanwhile, the temperature and shear resistances of systems of 18-4( OH)-18-4( OH)-18 and several common single-chain surfactants are compared. The rheological experiments show that, the coexistence of NaSal and NaC1 makes it easier for the system to promote micellar growth yielding wormlike micelles than single NaSal or NaC1. The apparent vis- cosity of 18-4(OH) -18-4(OH) -18 solution maintains over 87. 5 mPa-s above 100 22. The results indi- cate that there exists a synergistic effect in solutions of 18-4 ( OH ) -18-4 ( OH ) -18 trimeric surfactant展开更多
Catalytic epoxidation of alkenes is an important type of organic reaction in chemical industry,and the deep insight into catalyst deactivation will help to develop new epoxidation process.In this work,series of quater...Catalytic epoxidation of alkenes is an important type of organic reaction in chemical industry,and the deep insight into catalyst deactivation will help to develop new epoxidation process.In this work,series of quaternary ammoniums bearing different cationic sizes,i.e.MTOA+(methyltrioctylammonium,[(C_(8)H_(17))_(3)CH_(3)N]+),HTMA+(hexadecyltrimethylammonium,[(C_(16)H_(33))(CH_(3))_(3)N]+) and DMDOA+(dimethyldioctadecylammonium,[(C_(18)H_(37))_(2)(CH_(3))_(2)N]+) were incorporated with polyoxometalate (POM) anions to prepare phase transfer catalysts (PTCs),which were used in the styrene epoxidations.Among them,(MTOA)_(3)PW_(4)O_(24)exhibits the best catalytic performance judged from the highest styrene conversion rate(52%) and styrene oxide selectivity (93%),during which the styrene epoxidation conditions were optimized.Meanwhile,the deactivation mechanism of this kind of PTCs was proposed firstly,i.e.in the case of low H_(2)O_(2) content,the oxidant can only be used in the styrene epoxidation,in which the catalyst can transform into stable Keggin-type POM.But when the content of H_(2)O_(2) is higher,the excess H_(2)O_(2) can reactivate the Keggin-type POM into active (PW_(4)O_(24))_(3)-anions,which can trigger the ring-opening polymerization of styrene oxide.Consequently,the catalyst is deactivated by adhered poly(styrene oxide)irreversibly,which was determined by NMR spectra.In this situation,the active moiety{PO_(4)[WO(O_(2))_(2)]_(4)}_(3)-in phase-transfer catalytic system can break into some unidentified species with low W/P ratio with the presence of epoxides.This work will be beneficial for the design of new PTCs in alkene epoxidation in fine chemical industry.展开更多
The effects of mono-valent cations, Li^+, K^+, Rb^+, Cs^+ and NH_4^+, on ^(23)Na NMR were investigated. It was found that the chemical shifts for Na^+ signal shifted downfield with the increase in the relative amounts...The effects of mono-valent cations, Li^+, K^+, Rb^+, Cs^+ and NH_4^+, on ^(23)Na NMR were investigated. It was found that the chemical shifts for Na^+ signal shifted downfield with the increase in the relative amounts of monovalent cations. It was suggested that mono-valent cations had competition coordination with Na^+ for Dy(PPP)_2^(7-).展开更多
Samples of undoped, and CuO, CaO, Al2O3 as well as V2O5 doped MnZn ferrite were prepared using standard ceramic method. The X-ray diffraction results for the base and doped ferrite samples show a single phase with spi...Samples of undoped, and CuO, CaO, Al2O3 as well as V2O5 doped MnZn ferrite were prepared using standard ceramic method. The X-ray diffraction results for the base and doped ferrite samples show a single phase with spinel cubic structure. The Mossbauer spectrum of the base sample indicates line broadening and overlapping due to relaxation of magnetic dipoles. The temperature dependence of DC-electrical conductivity has been discussed on the basis of electronic conduction (electron hopping) and ionic conduction mechanism.展开更多
This paper presents a step-by-step procedure using the three-dimensional boundary element approach to study the behavior of semi-circular canyons under seismic shear waves. The boundary element code TDASC allows utili...This paper presents a step-by-step procedure using the three-dimensional boundary element approach to study the behavior of semi-circular canyons under seismic shear waves. The boundary element code TDASC allows utilization for various canyon geometries, evaluation of concurrent seismic waves and calculation of the ground motions on canyons due to an excitation at any arbitrary point of the incident field. Considering the widening ratio of the canyon(including prismatic, semi-prismatic and non-prismatic canyons), wave characteristics(wavelength, dimensionless period, direction) and maximum amplification pattern, the solution was applied to carry out a series of parametric studies. It was shown that canyon form can significantly affect the displacement amplification, especially at the points located on its edges. By increasing the wave dimensionless frequency(η > 1), the amplification pattern becomes more complex. On the basis of the results from a variety of considered cases, a new expression has been presented for the limiting wavelength beyond which the widening of the canyon will not have a major effect on the displacement amplification. To verify the reliability of the proposed approach, the obtained results, expressed in terms of displacement amplitude, were compared with those from the available published literature and a reasonably good agreement was observed.展开更多
It is well-known that the electrolytes can influence the electrochemical reduction of carbon dioxide(ERCO2)in aqueous media.In this work,we explore the effects of alkali metal cations and anions(Li^+,Na^+,K^+,Rb^+,Cs^...It is well-known that the electrolytes can influence the electrochemical reduction of carbon dioxide(ERCO2)in aqueous media.In this work,we explore the effects of alkali metal cations and anions(Li^+,Na^+,K^+,Rb^+,Cs^+,HCO3^-,Cl^-,Br^-,I^-)on the current density and product selectivity for the ERCO2 into formic acid(HCOOH)on the SnO2/carbon paper(Sn O2/C)electrode.Results of the ERCO2 experiments show that for the cations,the promotion effects on current density and faradaic efficiencies(FEs)are in the order of Li^+b Na^+b K^+b Cs^+b Rb^+.For the anions,the current density values are in the order of Na HCO3 b NaClb Na Br b Na I and KHCO3 b KCl≈KI b KBr,respectively,and that on the FEs for the formation of the HCOOH(FEHCOOH)is HCO3-b Cl-b Br-b I-.Based on this result,the effects of alkali metal cations and anions on ERCO2 are discussed.展开更多
An exploratory study was conducted in the coastal plantation (12- and 17-year-old Sonneratia apetala) of Char Alim and Char Piya and on their adjacent barren lands at Char Rehania and Char Nurul Islam in Hatiya of N...An exploratory study was conducted in the coastal plantation (12- and 17-year-old Sonneratia apetala) of Char Alim and Char Piya and on their adjacent barren lands at Char Rehania and Char Nurul Islam in Hatiya of Noakhali district, in Bangladesh to determine afforestation effects on soil properties. At soil depths of 0-10, 10-30 and 30-40 cm across three different land strips viz. inland, middle and sea side in 12- and 17-year-old keora (Sonneratia apetala) plantations, soil moisture, particle density, organic matter and C, total N, pH, available P, K, Na, Ca and Mg were significantly (p≤0.05, p≤0.01, p≤0.001) higher, and soil salinity significantly (p〈0.001) lower than that in their adjacent barren lands. Soil moisture, particle density, organic matter and C, total N, pH, soil salinity, available P, K, Na, Ca and Mg of surface soil in Char Alim plantation at inland were 31.09%, 2.24 g.cm^-3, 2.41%, 4.14%, 0.58%, 7.07, 0.09 dS'cm^-1, 28.06 mg.L^-1, 0.50 mg-L^- 1 11.5 mg-L^-1, 3.30 mg·L^-1 and 2.7 mmol.kg^-1, respectively. Their corresponding values for the same depth and land position at adjacent Char Rehania barren land were 16.69%, 1.25g.cm^-3, 0.43%, 0.74%, 0.25%, 6.57, 0.13 dS.cm^-1, 13.07mg-L^-1, 0.30 mg.L^-1, 1.4 mg.L^-1, 0.30 mmol·kg^-1 and 0.50 mg.L^-1, respectively. Soil moisture, particle density, organic matter and C, total N, pH, available P, K and Ca decreased, and soil salinity, available Na and Mg increased from inland towards sea side in the plantations. Although soil texture did not differ in most soil depths between plantation and adjacent barren land, proportion of sand particle was significantly (p≤0.01) lower and silt particle significantly (p〈0.001) in the plantations higher than that in their adjacent barren lands. In the study, evaluation of all the parameters was also done for the other pair of lands.展开更多
An exploratory study was conducted in the coastal plantation (12-and 17-year-old Sonneratia apetala) of Char Alim and Char Piya and on their adjacent barren lands at Char Rehania and Char Nurul Islam in Hatiya of Noak...An exploratory study was conducted in the coastal plantation (12-and 17-year-old Sonneratia apetala) of Char Alim and Char Piya and on their adjacent barren lands at Char Rehania and Char Nurul Islam in Hatiya of Noakhali district, in Bangladesh to determine afforestation effects on soil properties. At soil depths of 0-10, 10-30 and 30-40 cm across three different land strips viz. inland, middle and sea side in 12-and 17-year-old keora (Sonneratia apetala) plantations, soil moisture, particle density, organic matter and C, total N, pH, available P, K, Na, Ca and Mg were significantly (p≤0.05, p≤0.01, p≤0.001) higher, and soil salinity significantly (p≤0.001) lower than that in their adjacent barren lands. Soil moisture, particle density, organic matter and C, total N, pH, soil salinity, available P, K, Na, Ca and Mg of surface soil in Char Alim plantation at inland were 31.09%, 2.24 g·cm-3, 2.41%, 4.14%, 0.58%, 7.07, 0.09 dS·cm-1, 28.06 mg·L-1, 0.50 mg·L-1 11.5 mg·L-1, 3.30 mg·L-1 and 2.7 mmol·kg-1, respectively. Their corresponding values for the same depth and land position at adjacent Char Rehania barren land were 16.69%, 1.25g·cm-3, 0.43%, 0.74%, 0.25%, 6.57, 0.13 dS·cm-1, 13.07mg·L-1, 0.30 mg·L-1, 1.4 mg·L-1, 0.30 mmol·kg-1 and 0.50 mg·L-1, respectively. Soil moisture, particle density, organic matter and C, total N, pH, available P, K and Ca decreased, and soil salinity, available Na and Mg increased from inland towards sea side in the plantations. Although soil texture did not differ in most soil depths between plantation and adjacent barren land, proportion of sand particle was significantly (p≤0.01) lower and silt particle significantly (p≤0.001) in the plantations higher than that in their adjacent barren lands. In the study, evaluation of all the parameters was also done for the other pair of lands.展开更多
文摘Electrocatalytic reduction reactions,powered by clean energy sources such as solar energy and wind,offer a sustainable method for converting inexpensive feedstocks(e.g.,CO_(2),N_(2)/NO_(x),organics,and O_(2))into high-value-added chemicals or fuels.The design and modification of electrocatalysts have been widely implemented to improve their performance in these reactions.However,bottle-necks are encountered,making it challenging to further improve performance through catalyst development alone.Recently,cations in the electrolyte have emerged as critical factors for tuning both the activity and product selectivity of reduction reactions.This review summarizes recent advances in understanding the role of cation effects in electrocatalytic reduction reactions.First,we introduce the mechanisms underlying cation effects.We then provide a comprehensive overview of their application in electroreduction reactions.Characterization techniques and theoretical calcula-tion methods for studying cation effects are also discussed.Finally,we address remaining challeng-es and future perspectives in this field.We hope that this review offers fundamental insights and design guidance for utilizing cation effects,thereby advancing their development.
文摘The electrochemical reduction of CO_(2)(eCO_(2)R)under ambient conditions is crucial for reducing carbon emissions and achieving carbon neutrality.Despite progress with alkaline and neutral electrolytes,their efficiency is limited by(bi)carbonates formation.Acidic media have emerged as a solution,addressing the(bi)carbonates challenge but introducing the issue of the hydrogen evolu-tion reaction(HER),which reduces CO_(2) conversion efficiency in acidic environments.This review focuses on enhancing the selectivity of acidic CO_(2) electrolysis.It commences with an overview of the latest advancements in acidic CO_(2) electrolysis,focusing on product selectivity and electrocatalytic activity enhancements.It then delves into the critical factors shaping selectivity in acidic CO_(2) electrolysis,with a special emphasis on the influence of cations and catalyst design.Finally,the research challenges and personal perspectives of acidic CO_(2) electrolysis are suggested.
基金Supported by National Natural Science Foundation of China(No. 2 0 36 5 0 0 1) and Natural Funds of Guangxi Province
文摘The change color effect of gold nanoparticle solutions was studied by means of resonance scattering and absorption spectrometry and scan electron microscopy. The red Au nanoparticles with a size of 10 nm exhibit a resonance absorption peak and a resonance scattering peak all at 525 nm. After some inorganic electrolyte was added to a red Au nanoparticles solution, the color of the solution became blue and the absorbance at (600_700) nm was significantly increased. The ratio of the concentration of monovalent cations, at which the resonance scattering of the system at 525 nm is maximal to that of divalent cations, is in the range of 100∶1_100∶1.8. It is in good agreement with the Schulze-Hardy rule of the coagulation value of electrolyte. After adding some cationic surfactants to the above solution, the color of the solution is in deep blue, with two resonance absorption peaks at 550 and 680 nm, and a greatly enhanced resonance scattering peak at 525 nm. The experiments demonstrate that the stronger the hydrophobicity of the cationic surfactant is, the stronger the change color effect of the Au nanoparticle solution promoted by cationic surfactant is. The change color effect of Au nanoparticle solution is resulted from the increased diameter of Au nanoparticles, and the changes of resonance absorption peak and resonance scattering.
基金Project(Nos.49771046 and 49831005)supported by the National Natural Science Foundation of China and the Center for International Cooperation,Ministry of Foreign Affairs,State of Israel.
文摘The electrical conductivities (ECs) of suspensions containing 25 and 30 gkg^(-1) solids prepared from the electrodialyzed clay fraction (< 2μm in diameter) of latosol,yellow-brown soil, and black soil, dispersed in various nitrate solutions having concentrations of 1X 10^(-4)/z mol L^(-1), where z is the valence, and in distilled water, were measured at fieldstrengths ranging from 14 kV cm^(-1) to 210 kV cm^(-1). On the basis of analyses of the chargedensity and exchangeable ion composition on the surfaces of soil particles in the suspensions, andof the characters of the EC-field strength curves of the various suspensions, it was inferred thatthe increment of EC (ΔEC) and/or relative electrical conductivity (REC) can indicate the bondingstrength between cations and soil particles. The bonding strengths of various cations with the soilsdiminished in the order: K^+ > Zn^(2+) > Mg^(2+) = Ca^(2+) > Na^+ for latosol, Ca^(2+) > Zn^(2+) >Mg^(2+) = K^+ > Na^+ for yellow-brown soil, and Zn^(2+) ≥ Ca^(2+) ≥ Mg^(2+) > K^+ > Na^+ for blacksoil.
基金supported by the National Key R&D Program of China(2017YFB0702800)National Natural Science Foundation of China(21802168,21503280,21603277)China Petrochemical Corporation(Sinopec Group)~~
文摘In this contribution,we report the cooperative structure-directing effect of choline hydroxide and aluminosilicate*BEA zeolite in the synthesis of aluminogermanosilicate IWR zeolites for the first time.*BEA zeolites,at variance with any other aluminosilicate zeolites,can serve as heterogeneous seeds for the growth of IWR zeolites and play a cooperative structure-directing role.The crystallization process was investigated using multiple techniques to characterize a series of solid products obtained with various crystallization times.The experiments clearly showed the dissolution of the*BEA zeolite and of an intermediate CDO-type structure.A plausible mechanism for the novel cooperative synthesis has been proposed.The crystallization of the IWR zeolite involves several steps,among which the crucial one is believed to be the reassembly of the building units produced from the decomposition of*BEA zeolite seeds,induced by choline molecules.Having similar structure and common building units(four-,five-,and six-membered rings)with the IWR zeolite,the*BEA zeolite is capable of promoting the reassembly of the building units and can thus play a cooperative structure-directing role.By highlighting the cooperative structure-directing effect of organic molecules and heterogeneous seeds,this study opens up new perspectives for the synthesis of target zeolites that are difficult to prepare by traditional methods.This new synthetic route is also expected to shed light on the discovery of novel zeolites.
文摘The electrocatalytic CO_(2)reduction reaction(CO_(2)RR)has attracted increasing attention in recentyears.Practical electrocatalysis of CO_(2)RR must be carried out in aqueous solutions containing electrolytesof alkali metal cations such as sodium and potassium.Although considerable efforts havebeen made to design efficient electrocatalysts for CO_(2)RR and to investigate the structure–activityrelationships using molecular model complexes,only a few studies have been investigated the effectof alkali metal cations on electrocatalytic CO_(2)RR.In this study,we report the effect of alkali metalcations(Na^(+)and K^(+))on electrocatalytic CO_(2)RR with Fe porphyrins.By running CO_(2)RR electrocatalysisin dimethylformamide(DMF),we found that the addition of Na^(+)or K^(+)considerably improves thecatalytic activity of Fe chloride tetrakis(3,4,5‐trimethoxyphenyl)porphyrin(FeP).Based on thisresult,we synthesized an Fe porphyrin^(N)18C6‐FeP bearing a tethered 1‐aza‐18‐crown‐6‐ether(^(N)18C6)group at the second coordination sphere of the Fe site.We showed that with the tethered^(N)18C6 to bind Na^(+)or K^(+),^(N)18C6‐FeP is more active than FeP for electrocatalytic CO_(2)RR.This workdemonstrates the positive effect of alkali metal cations to improve CO_(2)RR electrocatalysis,which isvaluable for the rational design of new efficient catalysts.
基金Supported by the National Natural Science Foundation of China under Grant No 11404180the Natural Science Foundation of Heilongjiang Province under Grant Nos F201335,A2015010,and A2015011the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province under Grant No LBH-Q14159
文摘The electronic structures of PF and PF+ are calculated with the high-level configuration interaction method. To improve the precision of calculations, the spin-orbit coupling effect, the scalar relativistic effect, and the Davidson correction(q-Q) are also considered. The spectroscopic parameters of bound states are derived by the electronic structures of PF and PF+, which are in good accordance with the measurements. The transition dipole moments of spin-allowed transitions are evaluated, and the radiative lifetimes of several A S states of PF and PF+ are obtained.
文摘A viscoelastic system formed by the solutions of di(2-hydroxyl-dimethylene ether)-α,ω, y-triple ( dimethyloctadecylammonium chlorine ) ( 18-4 ( OH ) -18-4 ( OH ) -18 ) is proposed to solve the problems of poor temperature and shear resistances of clean fracturing fluid. The apparent viscosity of 18-4( OH)-18-4( OH)-18 solution affected by inorganic salt, hydrotropic salt and their mixtures is investigated using steady state measurements. Meanwhile, the temperature and shear resistances of systems of 18-4( OH)-18-4( OH)-18 and several common single-chain surfactants are compared. The rheological experiments show that, the coexistence of NaSal and NaC1 makes it easier for the system to promote micellar growth yielding wormlike micelles than single NaSal or NaC1. The apparent vis- cosity of 18-4(OH) -18-4(OH) -18 solution maintains over 87. 5 mPa-s above 100 22. The results indi- cate that there exists a synergistic effect in solutions of 18-4 ( OH ) -18-4 ( OH ) -18 trimeric surfactant
基金financial supported by the National Natural Science Foundation of China (22078065)Key Program of Qingyuan Innovation Laboratory (00221001)Quanzhou City Science & Technology Program of China (2020C008R)。
文摘Catalytic epoxidation of alkenes is an important type of organic reaction in chemical industry,and the deep insight into catalyst deactivation will help to develop new epoxidation process.In this work,series of quaternary ammoniums bearing different cationic sizes,i.e.MTOA+(methyltrioctylammonium,[(C_(8)H_(17))_(3)CH_(3)N]+),HTMA+(hexadecyltrimethylammonium,[(C_(16)H_(33))(CH_(3))_(3)N]+) and DMDOA+(dimethyldioctadecylammonium,[(C_(18)H_(37))_(2)(CH_(3))_(2)N]+) were incorporated with polyoxometalate (POM) anions to prepare phase transfer catalysts (PTCs),which were used in the styrene epoxidations.Among them,(MTOA)_(3)PW_(4)O_(24)exhibits the best catalytic performance judged from the highest styrene conversion rate(52%) and styrene oxide selectivity (93%),during which the styrene epoxidation conditions were optimized.Meanwhile,the deactivation mechanism of this kind of PTCs was proposed firstly,i.e.in the case of low H_(2)O_(2) content,the oxidant can only be used in the styrene epoxidation,in which the catalyst can transform into stable Keggin-type POM.But when the content of H_(2)O_(2) is higher,the excess H_(2)O_(2) can reactivate the Keggin-type POM into active (PW_(4)O_(24))_(3)-anions,which can trigger the ring-opening polymerization of styrene oxide.Consequently,the catalyst is deactivated by adhered poly(styrene oxide)irreversibly,which was determined by NMR spectra.In this situation,the active moiety{PO_(4)[WO(O_(2))_(2)]_(4)}_(3)-in phase-transfer catalytic system can break into some unidentified species with low W/P ratio with the presence of epoxides.This work will be beneficial for the design of new PTCs in alkene epoxidation in fine chemical industry.
文摘The effects of mono-valent cations, Li^+, K^+, Rb^+, Cs^+ and NH_4^+, on ^(23)Na NMR were investigated. It was found that the chemical shifts for Na^+ signal shifted downfield with the increase in the relative amounts of monovalent cations. It was suggested that mono-valent cations had competition coordination with Na^+ for Dy(PPP)_2^(7-).
文摘Samples of undoped, and CuO, CaO, Al2O3 as well as V2O5 doped MnZn ferrite were prepared using standard ceramic method. The X-ray diffraction results for the base and doped ferrite samples show a single phase with spinel cubic structure. The Mossbauer spectrum of the base sample indicates line broadening and overlapping due to relaxation of magnetic dipoles. The temperature dependence of DC-electrical conductivity has been discussed on the basis of electronic conduction (electron hopping) and ionic conduction mechanism.
文摘This paper presents a step-by-step procedure using the three-dimensional boundary element approach to study the behavior of semi-circular canyons under seismic shear waves. The boundary element code TDASC allows utilization for various canyon geometries, evaluation of concurrent seismic waves and calculation of the ground motions on canyons due to an excitation at any arbitrary point of the incident field. Considering the widening ratio of the canyon(including prismatic, semi-prismatic and non-prismatic canyons), wave characteristics(wavelength, dimensionless period, direction) and maximum amplification pattern, the solution was applied to carry out a series of parametric studies. It was shown that canyon form can significantly affect the displacement amplification, especially at the points located on its edges. By increasing the wave dimensionless frequency(η > 1), the amplification pattern becomes more complex. On the basis of the results from a variety of considered cases, a new expression has been presented for the limiting wavelength beyond which the widening of the canyon will not have a major effect on the displacement amplification. To verify the reliability of the proposed approach, the obtained results, expressed in terms of displacement amplitude, were compared with those from the available published literature and a reasonably good agreement was observed.
基金financially supported by International Academic Cooperation and Exchange Program of Shanghai Science and Technology Committee(18160723600)Scientific Research and Technology Development Plan of Guangxi(GUIKE AD17195084)。
文摘It is well-known that the electrolytes can influence the electrochemical reduction of carbon dioxide(ERCO2)in aqueous media.In this work,we explore the effects of alkali metal cations and anions(Li^+,Na^+,K^+,Rb^+,Cs^+,HCO3^-,Cl^-,Br^-,I^-)on the current density and product selectivity for the ERCO2 into formic acid(HCOOH)on the SnO2/carbon paper(Sn O2/C)electrode.Results of the ERCO2 experiments show that for the cations,the promotion effects on current density and faradaic efficiencies(FEs)are in the order of Li^+b Na^+b K^+b Cs^+b Rb^+.For the anions,the current density values are in the order of Na HCO3 b NaClb Na Br b Na I and KHCO3 b KCl≈KI b KBr,respectively,and that on the FEs for the formation of the HCOOH(FEHCOOH)is HCO3-b Cl-b Br-b I-.Based on this result,the effects of alkali metal cations and anions on ERCO2 are discussed.
文摘An exploratory study was conducted in the coastal plantation (12- and 17-year-old Sonneratia apetala) of Char Alim and Char Piya and on their adjacent barren lands at Char Rehania and Char Nurul Islam in Hatiya of Noakhali district, in Bangladesh to determine afforestation effects on soil properties. At soil depths of 0-10, 10-30 and 30-40 cm across three different land strips viz. inland, middle and sea side in 12- and 17-year-old keora (Sonneratia apetala) plantations, soil moisture, particle density, organic matter and C, total N, pH, available P, K, Na, Ca and Mg were significantly (p≤0.05, p≤0.01, p≤0.001) higher, and soil salinity significantly (p〈0.001) lower than that in their adjacent barren lands. Soil moisture, particle density, organic matter and C, total N, pH, soil salinity, available P, K, Na, Ca and Mg of surface soil in Char Alim plantation at inland were 31.09%, 2.24 g.cm^-3, 2.41%, 4.14%, 0.58%, 7.07, 0.09 dS'cm^-1, 28.06 mg.L^-1, 0.50 mg-L^- 1 11.5 mg-L^-1, 3.30 mg·L^-1 and 2.7 mmol.kg^-1, respectively. Their corresponding values for the same depth and land position at adjacent Char Rehania barren land were 16.69%, 1.25g.cm^-3, 0.43%, 0.74%, 0.25%, 6.57, 0.13 dS.cm^-1, 13.07mg-L^-1, 0.30 mg.L^-1, 1.4 mg.L^-1, 0.30 mmol·kg^-1 and 0.50 mg.L^-1, respectively. Soil moisture, particle density, organic matter and C, total N, pH, available P, K and Ca decreased, and soil salinity, available Na and Mg increased from inland towards sea side in the plantations. Although soil texture did not differ in most soil depths between plantation and adjacent barren land, proportion of sand particle was significantly (p≤0.01) lower and silt particle significantly (p〈0.001) in the plantations higher than that in their adjacent barren lands. In the study, evaluation of all the parameters was also done for the other pair of lands.
文摘An exploratory study was conducted in the coastal plantation (12-and 17-year-old Sonneratia apetala) of Char Alim and Char Piya and on their adjacent barren lands at Char Rehania and Char Nurul Islam in Hatiya of Noakhali district, in Bangladesh to determine afforestation effects on soil properties. At soil depths of 0-10, 10-30 and 30-40 cm across three different land strips viz. inland, middle and sea side in 12-and 17-year-old keora (Sonneratia apetala) plantations, soil moisture, particle density, organic matter and C, total N, pH, available P, K, Na, Ca and Mg were significantly (p≤0.05, p≤0.01, p≤0.001) higher, and soil salinity significantly (p≤0.001) lower than that in their adjacent barren lands. Soil moisture, particle density, organic matter and C, total N, pH, soil salinity, available P, K, Na, Ca and Mg of surface soil in Char Alim plantation at inland were 31.09%, 2.24 g·cm-3, 2.41%, 4.14%, 0.58%, 7.07, 0.09 dS·cm-1, 28.06 mg·L-1, 0.50 mg·L-1 11.5 mg·L-1, 3.30 mg·L-1 and 2.7 mmol·kg-1, respectively. Their corresponding values for the same depth and land position at adjacent Char Rehania barren land were 16.69%, 1.25g·cm-3, 0.43%, 0.74%, 0.25%, 6.57, 0.13 dS·cm-1, 13.07mg·L-1, 0.30 mg·L-1, 1.4 mg·L-1, 0.30 mmol·kg-1 and 0.50 mg·L-1, respectively. Soil moisture, particle density, organic matter and C, total N, pH, available P, K and Ca decreased, and soil salinity, available Na and Mg increased from inland towards sea side in the plantations. Although soil texture did not differ in most soil depths between plantation and adjacent barren land, proportion of sand particle was significantly (p≤0.01) lower and silt particle significantly (p≤0.001) in the plantations higher than that in their adjacent barren lands. In the study, evaluation of all the parameters was also done for the other pair of lands.