The process and mechanism of the ligand volume controlled Pd(PR3)2 (PR3=PH3, PMe3, and PtBu3) oxidative addition with aryl bromide were investigated, using density functional theory method with the conductor-like ...The process and mechanism of the ligand volume controlled Pd(PR3)2 (PR3=PH3, PMe3, and PtBu3) oxidative addition with aryl bromide were investigated, using density functional theory method with the conductor-like screening model. Association pathway and dissocia-tion pathway were investigated by the comparison of several energies. The cleavage energy of Pd(PR3)2 complex was calculated, as well as the oxidative addition reaction barrier energy of Pd(PR3)n (n=1,2) with aryl bromide in N,N-dimethylformamide solvent. This study proved that the ligands volume possessed a great impact on the mechanism of oxidative addition: less bulky ligand palladium associated with aryl bromide via two donor ligands,but larger bulky ligand palladium coordinated via monoligand.展开更多
To reduce complexity, the combat effectiveness simulation system(CESS) is often decomposed into static structure,physical behavior, and cognitive behavior, and model abstraction is layered onto domain invariant knowle...To reduce complexity, the combat effectiveness simulation system(CESS) is often decomposed into static structure,physical behavior, and cognitive behavior, and model abstraction is layered onto domain invariant knowledge(DIK) and application variant knowledge(AVK) levels. This study concentrates on the specification of CESS’s physical behaviors at the DIK level of abstraction, and proposes a model driven framework for efficiently developing simulation models within model-driven engineering(MDE). Technically, this framework integrates the four-layer metamodeling architecture and a set of model transformation techniques with the objective of reducing model heterogeneity and enhancing model continuity. As a proof of concept, a torpedo example is illustrated to explain how physical models are developed following the proposed framework. Finally, a combat scenario is constructed to demonstrate the availability, and a further verification is shown by a reasonable agreement between simulation results and field observations.展开更多
Combat system effectiveness simulation (CSES) is a special type of complex system simulation. Three non-functional requirements (NFRs), i.e. model composability, domain specific modeling, and model evolvability, are g...Combat system effectiveness simulation (CSES) is a special type of complex system simulation. Three non-functional requirements (NFRs), i.e. model composability, domain specific modeling, and model evolvability, are gaining higher priority from CSES users when evaluating different modeling methodologies for CSES. Traditional CSES modeling methodologies are either domain-neutral (lack of domain characteristics consideration and limited support for model composability) or domain-oriented (lack of openness and evolvability) and fall short of the three NFRs. Inspired by the concept of architecture in systems engineering and software engineering fields, we extend it into a concept of model architecture for complex simulation systems, and propose a model architecture-oriented modeling methodology in which the model architecture plays a central role in achieving the three NFRs. Various model-driven engineering (MDE) approaches and technologies, including simulation modeling platform (SMP), unified modeling language (UML), domain specific modeling (DSM), eclipse modeling framework (EMF), graphical modeling framework (GMF), and so forth, are applied where possible in representing the CSES model architecture and its components' behaviors from physical and cognitive domain aspects. A prototype CSES system, called weapon effectiveness simulation system (WESS), and a non-trivial air-combat simulation example are presented to demonstrate the methodology.展开更多
By using two PM2.5 automatic monitors,the protective effects of five common masks against PM2.5 were synchronously tested under actual ambient air conditions for a whole day. The results showed that not all masks had ...By using two PM2.5 automatic monitors,the protective effects of five common masks against PM2.5 were synchronously tested under actual ambient air conditions for a whole day. The results showed that not all masks had protective effects on PM2.5,and the protective effects of masks N95 and N90,which were designed specially for dust-proof,were superior among the five tested masks.展开更多
The influence of high temperature effects on the protrusion of Mach stem in strong shock reflection over a wedge was numerically investigated. A two-dimensional inviscid solver applies finite volume method and unstruc...The influence of high temperature effects on the protrusion of Mach stem in strong shock reflection over a wedge was numerically investigated. A two-dimensional inviscid solver applies finite volume method and unstructured quadrilateral grids were employed to simulate the flow. Theoretical analysis was also conducted to understand the phenomenon. Both numerical and theoretical results indicate a wall-jet penetrating forward is responsible for the occurrence of Mach stem protrusion. The protrusion degree seems to depend on the thermal energy buffer capacity of the testing gas. Approaches to increase the energy buffer capacity, such as vibrational relaxation, molecular dissociation, and increase of frozen heat caoacitv, all tend to escalate the orotrusion effect.展开更多
The interactions of He with dissociated screw dislocations in face-centered-cubic (fcc) Ni are investigated by using molecular dynamics simulations based on an embedded-atom method model. The binding and formation e...The interactions of He with dissociated screw dislocations in face-centered-cubic (fcc) Ni are investigated by using molecular dynamics simulations based on an embedded-atom method model. The binding and formation energies of interstitial He in and near Shockley partial cores are calculated. The results show that interstitial He atoms at tetrahedral sites in the perfect fee lattice and atoms occupying sites one plane above or below one of the two Shockley partial cores exhibit the strongest binding energy. The attractive or repulsive nature of the interaction between interstitial He and the screw dislocation depends on the relative position of He to these strong binding sites. In addition, the effect of He on the dissociation of screw dislocations are investigated. It is found that Fie atoms homogeneously distributed in the glide plane can reduce the stacking fault width.展开更多
Under 5 keV Ar ion bombardment of a 92Mo-100Mo target, we have investigated isotopic angular effects by means of the static and the dynamic Monte Carlo programs. Our calculated results are in quantitative agreement wi...Under 5 keV Ar ion bombardment of a 92Mo-100Mo target, we have investigated isotopic angular effects by means of the static and the dynamic Monte Carlo programs. Our calculated results are in quantitative agreement with the measured and other calculated results. The conclusion consistences among theories. simulations and measurements are also discussed.展开更多
To investigate tumor angiogenesis under the influence of Endostatin,mathematical modeling and numerical simulation of tumor angiogenesis are performed,with the mechanical environment in matrix,the inhibiting effects o...To investigate tumor angiogenesis under the influence of Endostatin,mathematical modeling and numerical simulation of tumor angiogenesis are performed,with the mechanical environment in matrix,the inhibiting effects of Angiostatin and Endostatin into consideration.The展开更多
With the development of manned spaceflight, more and more researches are involved in the area of gravitation physiology. When astronauts are exposed to microgravity, a series of special physiological or pathological c...With the development of manned spaceflight, more and more researches are involved in the area of gravitation physiology. When astronauts are exposed to microgravity, a series of special physiological or pathological changes will occur, which will start self-regulation mechanisms to reduce abnormalities and help the organism to better adapt to microgravity. However, these adaptive changes may also induce degradation or damage to physiological functions. This paper summarizes the physiological effects of microgravity on the human body from the aspects of skeletal and mineral metabolism, muscle structure and function, vestibular functions, cardiovascular function and pulmonary function, as well as expounds some commonly used ground-based space analogies. The paper will provide a reference for further study on the physiological effects of microgravity.展开更多
This work aims to reveal the evolution of the porosity in the Triassic Yanchang Formation tight sandstone reservoir of the Xifeng-Ansai area of Ordos Basin. Based on destructive diagenesis (compaction and cementation...This work aims to reveal the evolution of the porosity in the Triassic Yanchang Formation tight sandstone reservoir of the Xifeng-Ansai area of Ordos Basin. Based on destructive diagenesis (compaction and cementation) and constructive diagenesis (dissolution) of sandstone reservoirs, this study analyzed the diagenesis characteristics of the tight sandstone reservoirs in this area, and discussed the relationship between sandstone diagenesis and porosity evolution in combination with present porosity profile characteristics of sandstone reservoir. The effect simulation principle was employed for the mathematical derivation and simulation of the evolution of porosity in the Yanchang Formation tight sandstone reservoirs. The result shows that compaction always occurs in tight sandstone reservoirs in the Yanchang Formation, and cementation occurs when the burial depth increases to a certain value and remains ever since. Dissolution occurs only at a certain stage of the evolution with window features. In the corresponding present porosity profile, diagenesis is characterized by segmentation. From the shallow to the deep, compaction, compaction, cementation and dissolution, compaction and cementation occur successively. Therefore, the evolution of sandstone porosity can be divided into normal compaction section, acidification and incremental porosity section, and normal compaction section after dissolution. The results show that the evolution of sandstone porosity can be decomposed into porosity reduction model and porosity increase model. The superposition of the two models at the same depth in the three stages or in the same geological time can constitute the evolution simulation of the total porosity in sandstone reservoirs. By simulating the evolution of sandstone reservoir porosity of the eighth member in Xifeng area and the sixth member in Ansai area, it shows that they are similar in the evolution process and trend. The difference is caused by the regional uplift or subsidence and burial depth.展开更多
In solid backfill mining without gangue removal, the gangue is separated directly underground and backfilled into goaf. This necessitates the underground construction of an extra-large section chamber for separation e...In solid backfill mining without gangue removal, the gangue is separated directly underground and backfilled into goaf. This necessitates the underground construction of an extra-large section chamber for separation equipments. For the construction of an extra-large section chamber in the Tangshan mine, we proposed an active support through a combination of bolting, anchor cables, lining, and a reinforced chamber floor by inverted arch pouring. ABAQUS software was used to analyze the surrounding rock deformation and the plastic zone development of the chamber under different excavation schemes.The best excavation scheme was determined, and the effectiveness of the combined supports was verified. In practice, the engineering installation showed good overall control of the movement of the surrounding rock, with roof-to-floor and side-to-side convergences of 154.6 and 77.5 mm, respectively,which meets the requirements for underground coal gangue separation.展开更多
Tracer gas technique is a method to analyze the airflow path, measure the airflow quantity, and detect any recirculation or leakages in underground mine. In addition, it is also possible to evaluate the axial gas diff...Tracer gas technique is a method to analyze the airflow path, measure the airflow quantity, and detect any recirculation or leakages in underground mine. In addition, it is also possible to evaluate the axial gas diffusion of gas in turbulent bulk flow by utilizing the tracer gas data. This paper discussed about the measurement using tracer gas technique in Cibaliung Underground Mine, Indonesia and the evaluation of effective axial diffusion coefficient, E, by numerical simulation. In addition, a scheme to treat network flow in mine ventilation system was also proposed. The effective axial diffusion coefficient for each airway was evaluated based on Taylor's theoretical equation. It is found that the evaluated diffusion coefficient agrees well with Taylor's equation by considering that the wall friction factor, f, is higher than those for smooth pipe flow. It also shows that the value of effective diffusion coefficient can be inherently determined and the value is constant when matching with other measurements. Furthermore, there are possibilities to utilize the tracer gas measurement data to evaluate the airway friction factors.展开更多
In this paper, we review some recent studies on compressible turbulence conducted by the authors' group, which include fundamental studies on compressible isotropic turbulence (CIT) and applied studies on developin...In this paper, we review some recent studies on compressible turbulence conducted by the authors' group, which include fundamental studies on compressible isotropic turbulence (CIT) and applied studies on developing a con- strained large eddy simulation (CLES) for wall-bounded turbulence. In the first part, we begin with a newly pro- posed hybrid compact-weighted essentially nonoscillatory (WENO) scheme for a CIT simulation that has been used to construct a systematic database of CIT. Using this database various fundamental properties of compressible turbulence have been examined, including the statistics and scaling of compressible modes, the shocklet-turbulence interac- tion, the effect of local compressibility on small scales, the kinetic energy cascade, and some preliminary results from a Lagrangian point of view. In the second part, the idea and for- mulas of the CLES are reviewed, followed by the validations of CLES and some applications in compressible engineering problems.展开更多
A multichannel methanoic acid (HCOOH, λ=432.5 μm) laser interferometer/polarimeter is being developed from the previous eight-channel hydrogen cyanide (HCN, λ=337 μm) laser interferometer in the HL-2A tokamak....A multichannel methanoic acid (HCOOH, λ=432.5 μm) laser interferometer/polarimeter is being developed from the previous eight-channel hydrogen cyanide (HCN, λ=337 μm) laser interferometer in the HL-2A tokamak. A conventional Michelson-type interometer is used for the electron density measurement, and a Dodel-Kunz-type polarimeter is used for the Faraday rotation effect measurement, respectively. Each HCOOH laser can produce a linearly polarized radiation at a power lever of -30 mW, and a power stability 〈10% in 50 rain. A beam waist (diameter d0 ≈12.0 mm, about 200 mm away from the outlet) is finally determined through a chopping modulation technique. The latest optical layout of the interferometer/polarimeter has been finished, and the hardware data processing system based on the fast Fourier transform phase- comparator technique is being explored. In order to demonstrate the feasibility of the diagnostic scheme, two associated bench simulation experiments were carried out in the laboratory, in which the plasma was simulated by a piece of polytetrafluoroethene plate, and the Faraday rotation effect was simulated by a rotating half-wave plate. Simulation results agreed well with the initial experimental conditions. At present, the HCOOH laser interferometer/polarimeter system is being assembled on HL-2A, and is planned to be applied in the 2014-2015 experimental campaign.展开更多
On the basis of considering electrochemical reactions and collision relations in detail, a direct numerical simulation model of a helicon plasma discharge with three-dimensional two-fluid equations was employed to stu...On the basis of considering electrochemical reactions and collision relations in detail, a direct numerical simulation model of a helicon plasma discharge with three-dimensional two-fluid equations was employed to study the characteristics of the temporal evolution of particle density and electron temperature. With the assumption of weak ionization, the Maxwell equations coupled with the plasma parameters were directly solved in the whole computational domain. All of the partial differential equations were solved by the finite element solver in COMSOL Multiphysics^(TM) with a fully coupled method. In this work, the numerical cases were calculated with an Ar working medium and a Shoji-type antenna. The numerical results indicate that there exist two distinct modes of temporal evolution of the electron and ground atom density, which can be explained by the ion pumping effect. The evolution of the electron temperature is controlled by two schemes: electromagnetic wave heating and particle collision cooling. The high RF power results in a high peak electron temperature while the high gas pressure leads to a low steady temperature. In addition, an OES experiment using nine Ar I lines was conducted using a modified CR model to verify the validity of the results by simulation, showing that the trends of temporal evolution of electron density and temperature are well consistent with the numerically simulated ones.展开更多
In order to examine and analyze the effects of integration of land surface models with TOPMODEL and different approaches for the integration on the model simulation of water and energy balances,the coupled models have...In order to examine and analyze the effects of integration of land surface models with TOPMODEL and different approaches for the integration on the model simulation of water and energy balances,the coupled models have been developed,which incorporate TOPMODEL into the Simplified Biosphere Model(SSiB) with different approaches(one divides a basin into a number of zones according to the distribution of topographic index,and the other only divides the basin into saturated and unsaturated zones).The coupled models are able to(but SSiB is not able to) take into account the impacts of topography variation and vertical heterogeneity of soil saturated hydraulic conductivity on horizontal distribution of soil moisture and in turn on water and energy balances within the basin(or a grid cell).By using the coupled models and SSiB model itself,the daily hydrological components such as runoffs are simulated and final results are analyzed carefully.Simulated daily results of hydrological components produced by both SSiB and coupled models show that(i) There is significant difference between results of soil wetness,its vertical distribution and seasonal variation,water and energy balance,and daily runoff in the basin predicted by SSiB and by the coupled models.The land surface model currently used such as SSiB is likely to misrepresent real feature of water and energy balances in the basin.(ii) Compared with the results for the basin predicted by SSiB,the coupled models predict more strong vertical and seasonal changes in soil wetness,higher evaporation and lower runoff,and improve the base flow simulation obviously.(iii) Comparing the results for the basin predicted by two coupled models with different integration approach and SSiB one by one,the results of daily runoffs and soil wetness predicted by the two coupled models are quite similar.It means,for the coupled models,the approach by dividing a region being considered into more subzones may have limited effects on improving runoff simulation results.The scheme only to divide the region into saturated and unsaturated zones may be a convenient and effective scheme.But then,if the results from the two coupled models for the basin are carefully compared,the simulated results by the coupled model with dividing the basin into more subzones will show higher evaporation and surface runoff but lower subsurface flow,lower total runoff,and lower ground water level averaged for five years.展开更多
The effects of doubled carbon dioxide on rainfall responses to radiative processes of water clouds are investigated in this study.Two groups of two-dimensional cloud-resolving model sensitivity experiments with regard...The effects of doubled carbon dioxide on rainfall responses to radiative processes of water clouds are investigated in this study.Two groups of two-dimensional cloud-resolving model sensitivity experiments with regard to pre-summer heavy rainfall around the summer solstice and tropical rainfall around the winter solstice are conducted and their five-day averages over the model domain are analyzed.In the presence of radiative effects of ice clouds,doubled carbon dioxide changes pre-summer rainfall from the decrease associated with the enhanced atmospheric cooling to the increase associated with the enhanced infrared cooling as a result of the exclusion of radiative effects of water clouds.Doubled carbon dioxide leads to the reduction in tropical rainfall,caused by the removal of radiative effects of water clouds through the suppressed infrared cooling.In the absence of radiative effects of ice clouds,doubled carbon dioxide changes pre-summer rainfall from the increase associated with the strengthened atmospheric warming to the decrease associated with the weakened release of latent heat caused by the elimination of radiative effects of water clouds.The exclusion of radiative effects of water clouds increases tropical rainfall through the strengthened infrared cooling,which is insensitive to the change in carbon dioxide.展开更多
Tungsten is the most promising plasma-facing material (PFM) for future nuclear fusion reactors such as international thermonuclear experimental reactor (ITER) owing to its high melting temperature, high thermal co...Tungsten is the most promising plasma-facing material (PFM) for future nuclear fusion reactors such as international thermonuclear experimental reactor (ITER) owing to its high melting temperature, high thermal conductivity and low hydrogen retention. Under ITER-relevant conditions, a large amount of helium from the fusion reactions will constantly bombard the PFM. Though the energies of helium atoms in different regions are different,展开更多
An optical bandwidth analysis of a quantum-well (16 nm) transistor laser with 150-μm cavity length using a charge control model is reported in order to modify the quantum-well location through the base region. At c...An optical bandwidth analysis of a quantum-well (16 nm) transistor laser with 150-μm cavity length using a charge control model is reported in order to modify the quantum-well location through the base region. At constant bias current, the simulation shows significant enhancement in optical bandwidth due to moving the quantum well in the direction of collector-base junction. No remarkable resonance peak, limiting factor in laser diodes, is observed during this modification in transistor laser structure. The method can be utilized for transistor laser structure design.展开更多
Using a limited-area P-σ incorporated coordinate five-level primitive equation model fed with the ECMWF 5°×5°grid data,a simulation is made of a large-scale cold surge of late December 1982.Results sho...Using a limited-area P-σ incorporated coordinate five-level primitive equation model fed with the ECMWF 5°×5°grid data,a simulation is made of a large-scale cold surge of late December 1982.Results show that the Qinghai-Xizang Plateau has no profound thermal but dynamic effect on the East-Asian winter monsoon that forces cold air to go southwards by its east side,exciting Kelvin waves behind the cold front to result in the maximum NE wind.Besides,gravitational waves independent of the Plateau occur ahead of the front advancing towards the south.They may be due to the excitation involved in the front itself. The cold surge is propagated under the Hadley cell,making it strengthened and moved southwards.展开更多
基金This work was supported by the National Natural Science Foundation of China (No.20776089) and the New Century Excellent Talents Program of Ministry of Education (No.NCET-05-0783). The State Key Laboratory of Polymer Materials Engineering in Sichuan University was acknowledged for providing dmol3 modules and Prof. Ying Xue, Xiang-yuan Li, and Quan Zhu were grateful for the useful discussions.
文摘The process and mechanism of the ligand volume controlled Pd(PR3)2 (PR3=PH3, PMe3, and PtBu3) oxidative addition with aryl bromide were investigated, using density functional theory method with the conductor-like screening model. Association pathway and dissocia-tion pathway were investigated by the comparison of several energies. The cleavage energy of Pd(PR3)2 complex was calculated, as well as the oxidative addition reaction barrier energy of Pd(PR3)n (n=1,2) with aryl bromide in N,N-dimethylformamide solvent. This study proved that the ligands volume possessed a great impact on the mechanism of oxidative addition: less bulky ligand palladium associated with aryl bromide via two donor ligands,but larger bulky ligand palladium coordinated via monoligand.
基金supported by the National Natural Science Foundation of China(61273198)
文摘To reduce complexity, the combat effectiveness simulation system(CESS) is often decomposed into static structure,physical behavior, and cognitive behavior, and model abstraction is layered onto domain invariant knowledge(DIK) and application variant knowledge(AVK) levels. This study concentrates on the specification of CESS’s physical behaviors at the DIK level of abstraction, and proposes a model driven framework for efficiently developing simulation models within model-driven engineering(MDE). Technically, this framework integrates the four-layer metamodeling architecture and a set of model transformation techniques with the objective of reducing model heterogeneity and enhancing model continuity. As a proof of concept, a torpedo example is illustrated to explain how physical models are developed following the proposed framework. Finally, a combat scenario is constructed to demonstrate the availability, and a further verification is shown by a reasonable agreement between simulation results and field observations.
基金supported by the National Natural Science Foundation of China(61273198)
文摘Combat system effectiveness simulation (CSES) is a special type of complex system simulation. Three non-functional requirements (NFRs), i.e. model composability, domain specific modeling, and model evolvability, are gaining higher priority from CSES users when evaluating different modeling methodologies for CSES. Traditional CSES modeling methodologies are either domain-neutral (lack of domain characteristics consideration and limited support for model composability) or domain-oriented (lack of openness and evolvability) and fall short of the three NFRs. Inspired by the concept of architecture in systems engineering and software engineering fields, we extend it into a concept of model architecture for complex simulation systems, and propose a model architecture-oriented modeling methodology in which the model architecture plays a central role in achieving the three NFRs. Various model-driven engineering (MDE) approaches and technologies, including simulation modeling platform (SMP), unified modeling language (UML), domain specific modeling (DSM), eclipse modeling framework (EMF), graphical modeling framework (GMF), and so forth, are applied where possible in representing the CSES model architecture and its components' behaviors from physical and cognitive domain aspects. A prototype CSES system, called weapon effectiveness simulation system (WESS), and a non-trivial air-combat simulation example are presented to demonstrate the methodology.
基金Supported by the Monitoring Scientific Research Foundation of Jiangsu Province,China in 2013(1321)
文摘By using two PM2.5 automatic monitors,the protective effects of five common masks against PM2.5 were synchronously tested under actual ambient air conditions for a whole day. The results showed that not all masks had protective effects on PM2.5,and the protective effects of masks N95 and N90,which were designed specially for dust-proof,were superior among the five tested masks.
文摘The influence of high temperature effects on the protrusion of Mach stem in strong shock reflection over a wedge was numerically investigated. A two-dimensional inviscid solver applies finite volume method and unstructured quadrilateral grids were employed to simulate the flow. Theoretical analysis was also conducted to understand the phenomenon. Both numerical and theoretical results indicate a wall-jet penetrating forward is responsible for the occurrence of Mach stem protrusion. The protrusion degree seems to depend on the thermal energy buffer capacity of the testing gas. Approaches to increase the energy buffer capacity, such as vibrational relaxation, molecular dissociation, and increase of frozen heat caoacitv, all tend to escalate the orotrusion effect.
基金Supported by the Program of International S&T Cooperation under Grant No 2014DFG60230the Strategically Leading Program of the Chinese Academy of Sciences under Grant No XDA02040100+1 种基金the Shanghai Municipal Science and Technology Commission under Grant No 13ZR1448000the National Natural Science Foundation of China under Grant No 11505266
文摘The interactions of He with dissociated screw dislocations in face-centered-cubic (fcc) Ni are investigated by using molecular dynamics simulations based on an embedded-atom method model. The binding and formation energies of interstitial He in and near Shockley partial cores are calculated. The results show that interstitial He atoms at tetrahedral sites in the perfect fee lattice and atoms occupying sites one plane above or below one of the two Shockley partial cores exhibit the strongest binding energy. The attractive or repulsive nature of the interaction between interstitial He and the screw dislocation depends on the relative position of He to these strong binding sites. In addition, the effect of He on the dissociation of screw dislocations are investigated. It is found that Fie atoms homogeneously distributed in the glide plane can reduce the stacking fault width.
文摘Under 5 keV Ar ion bombardment of a 92Mo-100Mo target, we have investigated isotopic angular effects by means of the static and the dynamic Monte Carlo programs. Our calculated results are in quantitative agreement with the measured and other calculated results. The conclusion consistences among theories. simulations and measurements are also discussed.
基金supported by the National Natural Science Foundation of China,No.10372026,10772751Shanghai Leading Academic Discipline Project B112
文摘To investigate tumor angiogenesis under the influence of Endostatin,mathematical modeling and numerical simulation of tumor angiogenesis are performed,with the mechanical environment in matrix,the inhibiting effects of Angiostatin and Endostatin into consideration.The
文摘With the development of manned spaceflight, more and more researches are involved in the area of gravitation physiology. When astronauts are exposed to microgravity, a series of special physiological or pathological changes will occur, which will start self-regulation mechanisms to reduce abnormalities and help the organism to better adapt to microgravity. However, these adaptive changes may also induce degradation or damage to physiological functions. This paper summarizes the physiological effects of microgravity on the human body from the aspects of skeletal and mineral metabolism, muscle structure and function, vestibular functions, cardiovascular function and pulmonary function, as well as expounds some commonly used ground-based space analogies. The paper will provide a reference for further study on the physiological effects of microgravity.
基金financially supported by the National Natural Science Foundation of China (grant No.41502147)Sichuan Province University Scientific Innovation Team Construction Project (USITCP)+1 种基金the Yong Scholars Development Fund of SWPU (grant No.201499010089)the National Science and Technology Major Project (grant No.2011ZX05001-001-04)
文摘This work aims to reveal the evolution of the porosity in the Triassic Yanchang Formation tight sandstone reservoir of the Xifeng-Ansai area of Ordos Basin. Based on destructive diagenesis (compaction and cementation) and constructive diagenesis (dissolution) of sandstone reservoirs, this study analyzed the diagenesis characteristics of the tight sandstone reservoirs in this area, and discussed the relationship between sandstone diagenesis and porosity evolution in combination with present porosity profile characteristics of sandstone reservoir. The effect simulation principle was employed for the mathematical derivation and simulation of the evolution of porosity in the Yanchang Formation tight sandstone reservoirs. The result shows that compaction always occurs in tight sandstone reservoirs in the Yanchang Formation, and cementation occurs when the burial depth increases to a certain value and remains ever since. Dissolution occurs only at a certain stage of the evolution with window features. In the corresponding present porosity profile, diagenesis is characterized by segmentation. From the shallow to the deep, compaction, compaction, cementation and dissolution, compaction and cementation occur successively. Therefore, the evolution of sandstone porosity can be divided into normal compaction section, acidification and incremental porosity section, and normal compaction section after dissolution. The results show that the evolution of sandstone porosity can be decomposed into porosity reduction model and porosity increase model. The superposition of the two models at the same depth in the three stages or in the same geological time can constitute the evolution simulation of the total porosity in sandstone reservoirs. By simulating the evolution of sandstone reservoir porosity of the eighth member in Xifeng area and the sixth member in Ansai area, it shows that they are similar in the evolution process and trend. The difference is caused by the regional uplift or subsidence and burial depth.
基金supported by the National Natural Science Foundation of China (No. 51304206)the Project of National Scientific and Technical Supporting Programs Foundation of China (No. 2012BAB13B03)the Program for New Century Excellent Talents in University of Ministry of Education of China (No. NCET-11-0728)
文摘In solid backfill mining without gangue removal, the gangue is separated directly underground and backfilled into goaf. This necessitates the underground construction of an extra-large section chamber for separation equipments. For the construction of an extra-large section chamber in the Tangshan mine, we proposed an active support through a combination of bolting, anchor cables, lining, and a reinforced chamber floor by inverted arch pouring. ABAQUS software was used to analyze the surrounding rock deformation and the plastic zone development of the chamber under different excavation schemes.The best excavation scheme was determined, and the effectiveness of the combined supports was verified. In practice, the engineering installation showed good overall control of the movement of the surrounding rock, with roof-to-floor and side-to-side convergences of 154.6 and 77.5 mm, respectively,which meets the requirements for underground coal gangue separation.
基金the financial support of this work by Japan Ministry of Education, Culture, Sport, Science and Technology and Kyushu University’s Global COE program
文摘Tracer gas technique is a method to analyze the airflow path, measure the airflow quantity, and detect any recirculation or leakages in underground mine. In addition, it is also possible to evaluate the axial gas diffusion of gas in turbulent bulk flow by utilizing the tracer gas data. This paper discussed about the measurement using tracer gas technique in Cibaliung Underground Mine, Indonesia and the evaluation of effective axial diffusion coefficient, E, by numerical simulation. In addition, a scheme to treat network flow in mine ventilation system was also proposed. The effective axial diffusion coefficient for each airway was evaluated based on Taylor's theoretical equation. It is found that the evaluated diffusion coefficient agrees well with Taylor's equation by considering that the wall friction factor, f, is higher than those for smooth pipe flow. It also shows that the value of effective diffusion coefficient can be inherently determined and the value is constant when matching with other measurements. Furthermore, there are possibilities to utilize the tracer gas measurement data to evaluate the airway friction factors.
基金supported by the National Natural Science Foundation of China (Grants 11221061, 91130001, and 11302006)the National Science Foundation for Postdoctoral Scientists of China (Grants 2011M500194 and 2012M520109)
文摘In this paper, we review some recent studies on compressible turbulence conducted by the authors' group, which include fundamental studies on compressible isotropic turbulence (CIT) and applied studies on developing a con- strained large eddy simulation (CLES) for wall-bounded turbulence. In the first part, we begin with a newly pro- posed hybrid compact-weighted essentially nonoscillatory (WENO) scheme for a CIT simulation that has been used to construct a systematic database of CIT. Using this database various fundamental properties of compressible turbulence have been examined, including the statistics and scaling of compressible modes, the shocklet-turbulence interac- tion, the effect of local compressibility on small scales, the kinetic energy cascade, and some preliminary results from a Lagrangian point of view. In the second part, the idea and for- mulas of the CLES are reviewed, followed by the validations of CLES and some applications in compressible engineering problems.
基金supported by the National Magnetic Confinement Fusion Science Programs of China(Nos.2010GB101002 and 2014GB109001)National Natural Science Foundation of China(Nos.11075048 and 11275059)
文摘A multichannel methanoic acid (HCOOH, λ=432.5 μm) laser interferometer/polarimeter is being developed from the previous eight-channel hydrogen cyanide (HCN, λ=337 μm) laser interferometer in the HL-2A tokamak. A conventional Michelson-type interometer is used for the electron density measurement, and a Dodel-Kunz-type polarimeter is used for the Faraday rotation effect measurement, respectively. Each HCOOH laser can produce a linearly polarized radiation at a power lever of -30 mW, and a power stability 〈10% in 50 rain. A beam waist (diameter d0 ≈12.0 mm, about 200 mm away from the outlet) is finally determined through a chopping modulation technique. The latest optical layout of the interferometer/polarimeter has been finished, and the hardware data processing system based on the fast Fourier transform phase- comparator technique is being explored. In order to demonstrate the feasibility of the diagnostic scheme, two associated bench simulation experiments were carried out in the laboratory, in which the plasma was simulated by a piece of polytetrafluoroethene plate, and the Faraday rotation effect was simulated by a rotating half-wave plate. Simulation results agreed well with the initial experimental conditions. At present, the HCOOH laser interferometer/polarimeter system is being assembled on HL-2A, and is planned to be applied in the 2014-2015 experimental campaign.
基金funding from National Natural Science Foundation of China under grant agreement No. 11305265 (research on the acceleration mechanism of an electric double layer in a helicon plasma with a divergent magnetic field)
文摘On the basis of considering electrochemical reactions and collision relations in detail, a direct numerical simulation model of a helicon plasma discharge with three-dimensional two-fluid equations was employed to study the characteristics of the temporal evolution of particle density and electron temperature. With the assumption of weak ionization, the Maxwell equations coupled with the plasma parameters were directly solved in the whole computational domain. All of the partial differential equations were solved by the finite element solver in COMSOL Multiphysics^(TM) with a fully coupled method. In this work, the numerical cases were calculated with an Ar working medium and a Shoji-type antenna. The numerical results indicate that there exist two distinct modes of temporal evolution of the electron and ground atom density, which can be explained by the ion pumping effect. The evolution of the electron temperature is controlled by two schemes: electromagnetic wave heating and particle collision cooling. The high RF power results in a high peak electron temperature while the high gas pressure leads to a low steady temperature. In addition, an OES experiment using nine Ar I lines was conducted using a modified CR model to verify the validity of the results by simulation, showing that the trends of temporal evolution of electron density and temperature are well consistent with the numerically simulated ones.
基金supported by National Natural Science Foundation of China(Grant Nos.41075060 and 41030106)
文摘In order to examine and analyze the effects of integration of land surface models with TOPMODEL and different approaches for the integration on the model simulation of water and energy balances,the coupled models have been developed,which incorporate TOPMODEL into the Simplified Biosphere Model(SSiB) with different approaches(one divides a basin into a number of zones according to the distribution of topographic index,and the other only divides the basin into saturated and unsaturated zones).The coupled models are able to(but SSiB is not able to) take into account the impacts of topography variation and vertical heterogeneity of soil saturated hydraulic conductivity on horizontal distribution of soil moisture and in turn on water and energy balances within the basin(or a grid cell).By using the coupled models and SSiB model itself,the daily hydrological components such as runoffs are simulated and final results are analyzed carefully.Simulated daily results of hydrological components produced by both SSiB and coupled models show that(i) There is significant difference between results of soil wetness,its vertical distribution and seasonal variation,water and energy balance,and daily runoff in the basin predicted by SSiB and by the coupled models.The land surface model currently used such as SSiB is likely to misrepresent real feature of water and energy balances in the basin.(ii) Compared with the results for the basin predicted by SSiB,the coupled models predict more strong vertical and seasonal changes in soil wetness,higher evaporation and lower runoff,and improve the base flow simulation obviously.(iii) Comparing the results for the basin predicted by two coupled models with different integration approach and SSiB one by one,the results of daily runoffs and soil wetness predicted by the two coupled models are quite similar.It means,for the coupled models,the approach by dividing a region being considered into more subzones may have limited effects on improving runoff simulation results.The scheme only to divide the region into saturated and unsaturated zones may be a convenient and effective scheme.But then,if the results from the two coupled models for the basin are carefully compared,the simulated results by the coupled model with dividing the basin into more subzones will show higher evaporation and surface runoff but lower subsurface flow,lower total runoff,and lower ground water level averaged for five years.
基金Supported by the National Natural Science Foundation of China(41475039)National Key Basic Research and Development (973) Program of China(2015CB953601)
文摘The effects of doubled carbon dioxide on rainfall responses to radiative processes of water clouds are investigated in this study.Two groups of two-dimensional cloud-resolving model sensitivity experiments with regard to pre-summer heavy rainfall around the summer solstice and tropical rainfall around the winter solstice are conducted and their five-day averages over the model domain are analyzed.In the presence of radiative effects of ice clouds,doubled carbon dioxide changes pre-summer rainfall from the decrease associated with the enhanced atmospheric cooling to the increase associated with the enhanced infrared cooling as a result of the exclusion of radiative effects of water clouds.Doubled carbon dioxide leads to the reduction in tropical rainfall,caused by the removal of radiative effects of water clouds through the suppressed infrared cooling.In the absence of radiative effects of ice clouds,doubled carbon dioxide changes pre-summer rainfall from the increase associated with the strengthened atmospheric warming to the decrease associated with the weakened release of latent heat caused by the elimination of radiative effects of water clouds.The exclusion of radiative effects of water clouds increases tropical rainfall through the strengthened infrared cooling,which is insensitive to the change in carbon dioxide.
基金supported by the National Natural Science Foundation of China (Grant No. 51671009)the China National Funds for Distinguished Young Scientists (Grant No.51325103)
文摘Tungsten is the most promising plasma-facing material (PFM) for future nuclear fusion reactors such as international thermonuclear experimental reactor (ITER) owing to its high melting temperature, high thermal conductivity and low hydrogen retention. Under ITER-relevant conditions, a large amount of helium from the fusion reactions will constantly bombard the PFM. Though the energies of helium atoms in different regions are different,
文摘An optical bandwidth analysis of a quantum-well (16 nm) transistor laser with 150-μm cavity length using a charge control model is reported in order to modify the quantum-well location through the base region. At constant bias current, the simulation shows significant enhancement in optical bandwidth due to moving the quantum well in the direction of collector-base junction. No remarkable resonance peak, limiting factor in laser diodes, is observed during this modification in transistor laser structure. The method can be utilized for transistor laser structure design.
基金National Natural Science Foundation of China under grant 4870263partly by the State Meteorological Administration from Monsoon Research Funds.
文摘Using a limited-area P-σ incorporated coordinate five-level primitive equation model fed with the ECMWF 5°×5°grid data,a simulation is made of a large-scale cold surge of late December 1982.Results show that the Qinghai-Xizang Plateau has no profound thermal but dynamic effect on the East-Asian winter monsoon that forces cold air to go southwards by its east side,exciting Kelvin waves behind the cold front to result in the maximum NE wind.Besides,gravitational waves independent of the Plateau occur ahead of the front advancing towards the south.They may be due to the excitation involved in the front itself. The cold surge is propagated under the Hadley cell,making it strengthened and moved southwards.