Satellite-based atmospheric sounding measurements with high spectral resolution or from hyperspectral infrared (IR) sounders are important global observations for improving weather forecasts through assimilating the...Satellite-based atmospheric sounding measurements with high spectral resolution or from hyperspectral infrared (IR) sounders are important global observations for improving weather forecasts through assimilating them into operational numerical weather prediction (NWP) systems.展开更多
A propagation experiment was conducted in the South China Sea in 2014 with a flat bottom and seamounts respectively by using explosive sources. The effects of seamounts on sound propagation are analyzed by using the b...A propagation experiment was conducted in the South China Sea in 2014 with a flat bottom and seamounts respectively by using explosive sources. The effects of seamounts on sound propagation are analyzed by using the broadband signals. It is observed that the transmission loss (TL) decreases up to 7 dB for the signals in the first shadow zone due to the seamount reflection. Moreover, the TL might increase more than 30 dB in the converge zone due to the shadowing by seamounts. Abnormal TLs and pulse arrival structures at different ranges are explained by using the ray and wave theory. The experimental TLs and arrival pulses are compared with the numerical results and found to be in good agreement.展开更多
By using the expressions for the maximum absorption per wavelength (αλ),and the relaxation frequency fr of the boric acid relaxation derived previously by the author and employing the related oceanographic literatur...By using the expressions for the maximum absorption per wavelength (αλ),and the relaxation frequency fr of the boric acid relaxation derived previously by the author and employing the related oceanographic literatures, the effects of pressure, temperature, pH and salinity on (αλ)r and ∫r of the boric acid relaxation in sea water have been estimated. Results show that ( αλ), not only increases with pH but also increases approximately linearly with pressure and temperature, and is nearly proportional to the 1. 35 power of salinity. However, pressure, pH and salinity have negligible effect on ∫r; therefore, ∫r, can be approximately expressed as a function of temperature only. Comparisons of the predicted with the measured ( αλ)r and ∫r in different ocean areas are given.展开更多
Hearing loss is a common military health problem and it is closely related to exposures to impulse noises from blast explosions and weapon firings. In a study based on test data of chinchillas and scaled to humans (Mi...Hearing loss is a common military health problem and it is closely related to exposures to impulse noises from blast explosions and weapon firings. In a study based on test data of chinchillas and scaled to humans (Military Medicine, 181: 59-69), an empirical injury model was constructed for exposure to multiple sound impulses of equal intensity. Building upon the empirical injury model, we conduct a mathematical study of the hearing loss injury caused by multiple impulses of non-uniform intensities. We adopt the theoretical framework of viewing individual sound exposures as separate injury causing events, and in that framework, we examine synergy for causing injury (fatigue) or negative synergy (immunity) or independence among a sequence of doses. Starting with the empirical logistic dose-response relation and the empirical dose combination rule, we show that for causing injury, a sequence of sound exposure events are not independent of each other. The phenomenological effect of a preceding event on the subsequent event is always immunity. We extend the empirical dose combination rule, which is applicable only in the case of homogeneous impulses of equal intensity, to accommodate the general case of multiple heterogeneous sound exposures with non-uniform intensities. In addition to studying and extending the empirical dose combination rule, we also explore the dose combination rule for the hypothetical case of independent events, and compare it with the empirical one. We measure the effect of immunity quantitatively using the immunity factor defined as the percentage of decrease in injury probability attributed to the sound exposure in the preceding event. Our main findings on the immunity factor are: 1) the immunity factor is primarily a function of the difference in SELA (A- weighted sound exposure level) between the two sound exposure events;it is virtually independent of the magnitude of the two SELA values as long as the difference is fixed;2) the immunity factor increases monotonically from 0 to 100% as the first dose is varied from being significantly below the second dose, to being moderately above the second dose. The extended dose-response formulation developed in this study provides a theoretical framework for assessing the injury risk in realistic situations.展开更多
As an audiovisual medium, computer animations require superior image quality and professional soundtrack to lead audiences into their fascinating virtual world. Without sound, the impact of storytelling is reduced or ...As an audiovisual medium, computer animations require superior image quality and professional soundtrack to lead audiences into their fascinating virtual world. Without sound, the impact of storytelling is reduced or the story is even not under- standable. Despite the importance of sound, most animators are unfamiliar with sound editing software. Limited budget projects such as independent or student works have difficulty hiring sound professionals to create tailor-made soundtrack. Therefore, we need a suitable sound tool to express their individual ideas. In this paper, we propose an approach using schematic for both computer animation and sound. Our approach provides (1) physical simulation on sound through animation parameters and (2) a new channel for animators to add aesthetic values in sound through their experience of using schematics in existing animation software. We demonstrate our idea through several examples, such as Doppler shift, obstacle effect, importance, energetic, and sputtering effect.展开更多
Generalized equation for linear gravity waves in moving medium has been obtained. Sound wave is considered as a particular case and it is shown that in inhomogeneous medium at rest it is propagated in full concordance...Generalized equation for linear gravity waves in moving medium has been obtained. Sound wave is considered as a particular case and it is shown that in inhomogeneous medium at rest it is propagated in full concordance with the Doppler law and principle of motion relativity, i.e. these laws are invariant with reference to properties of medium (homogeneity or inhomogeneity). In moving medium they are fair only in the case of its homogeneity. In strongly inhomogeneous moving medium, propagation of sound is absolutely impossible.展开更多
文摘Satellite-based atmospheric sounding measurements with high spectral resolution or from hyperspectral infrared (IR) sounders are important global observations for improving weather forecasts through assimilating them into operational numerical weather prediction (NWP) systems.
基金Supported by the National Nature Science Foundation of China under Grant Nos 11434012 and 11174312
文摘A propagation experiment was conducted in the South China Sea in 2014 with a flat bottom and seamounts respectively by using explosive sources. The effects of seamounts on sound propagation are analyzed by using the broadband signals. It is observed that the transmission loss (TL) decreases up to 7 dB for the signals in the first shadow zone due to the seamount reflection. Moreover, the TL might increase more than 30 dB in the converge zone due to the shadowing by seamounts. Abnormal TLs and pulse arrival structures at different ranges are explained by using the ray and wave theory. The experimental TLs and arrival pulses are compared with the numerical results and found to be in good agreement.
基金This work is supported by National Natural Science Foundation of China
文摘By using the expressions for the maximum absorption per wavelength (αλ),and the relaxation frequency fr of the boric acid relaxation derived previously by the author and employing the related oceanographic literatures, the effects of pressure, temperature, pH and salinity on (αλ)r and ∫r of the boric acid relaxation in sea water have been estimated. Results show that ( αλ), not only increases with pH but also increases approximately linearly with pressure and temperature, and is nearly proportional to the 1. 35 power of salinity. However, pressure, pH and salinity have negligible effect on ∫r; therefore, ∫r, can be approximately expressed as a function of temperature only. Comparisons of the predicted with the measured ( αλ)r and ∫r in different ocean areas are given.
文摘Hearing loss is a common military health problem and it is closely related to exposures to impulse noises from blast explosions and weapon firings. In a study based on test data of chinchillas and scaled to humans (Military Medicine, 181: 59-69), an empirical injury model was constructed for exposure to multiple sound impulses of equal intensity. Building upon the empirical injury model, we conduct a mathematical study of the hearing loss injury caused by multiple impulses of non-uniform intensities. We adopt the theoretical framework of viewing individual sound exposures as separate injury causing events, and in that framework, we examine synergy for causing injury (fatigue) or negative synergy (immunity) or independence among a sequence of doses. Starting with the empirical logistic dose-response relation and the empirical dose combination rule, we show that for causing injury, a sequence of sound exposure events are not independent of each other. The phenomenological effect of a preceding event on the subsequent event is always immunity. We extend the empirical dose combination rule, which is applicable only in the case of homogeneous impulses of equal intensity, to accommodate the general case of multiple heterogeneous sound exposures with non-uniform intensities. In addition to studying and extending the empirical dose combination rule, we also explore the dose combination rule for the hypothetical case of independent events, and compare it with the empirical one. We measure the effect of immunity quantitatively using the immunity factor defined as the percentage of decrease in injury probability attributed to the sound exposure in the preceding event. Our main findings on the immunity factor are: 1) the immunity factor is primarily a function of the difference in SELA (A- weighted sound exposure level) between the two sound exposure events;it is virtually independent of the magnitude of the two SELA values as long as the difference is fixed;2) the immunity factor increases monotonically from 0 to 100% as the first dose is varied from being significantly below the second dose, to being moderately above the second dose. The extended dose-response formulation developed in this study provides a theoretical framework for assessing the injury risk in realistic situations.
文摘As an audiovisual medium, computer animations require superior image quality and professional soundtrack to lead audiences into their fascinating virtual world. Without sound, the impact of storytelling is reduced or the story is even not under- standable. Despite the importance of sound, most animators are unfamiliar with sound editing software. Limited budget projects such as independent or student works have difficulty hiring sound professionals to create tailor-made soundtrack. Therefore, we need a suitable sound tool to express their individual ideas. In this paper, we propose an approach using schematic for both computer animation and sound. Our approach provides (1) physical simulation on sound through animation parameters and (2) a new channel for animators to add aesthetic values in sound through their experience of using schematics in existing animation software. We demonstrate our idea through several examples, such as Doppler shift, obstacle effect, importance, energetic, and sputtering effect.
文摘Generalized equation for linear gravity waves in moving medium has been obtained. Sound wave is considered as a particular case and it is shown that in inhomogeneous medium at rest it is propagated in full concordance with the Doppler law and principle of motion relativity, i.e. these laws are invariant with reference to properties of medium (homogeneity or inhomogeneity). In moving medium they are fair only in the case of its homogeneity. In strongly inhomogeneous moving medium, propagation of sound is absolutely impossible.